通过原位聚合法制备了磷酸氢钙/四元氨基酸共聚物(DCP/PAA)复合材料,并采用XRD和IR方法对其组成结构进行了表征,用模拟体液和TrisHCl溶液分别研究了复合材料的体外生物活性和降解性能。结果表明:DcP/PAA复合材料的无机相与有机相存在着一定的相互作用;聚合反应时间对复合材料的强度有明显的影响,反应时间越长,PAA的黏度越大,材料的抗压强度越高;复合材料具有很好的生物活性,其表面能够在模拟体液中形成磷灰石层,新形成磷灰石的Ca与P原子比为1.59,为缺钙磷灰石;复合材料能够在Tris-HCl溶液中降解,PAA的黏度对复合材料在TrisHCl中的降解有一定的影响。复合材料浸泡在Tris-HCl溶液中,溶液的pH值在浸泡初期略有下降,但4周后稳定在7.0-7.2,与人体环境pH值接近。
A new kind of biocomposite of dicalcium phosphate (DCP)/four element poly (amino acid) copolymer (PAA) was prepared by using polymerization in situ for bone repair, and its composition and structure were characterized by XRD and IR. The in vitro bioactivity and degradability of DCP/PAA composite were determined by using simulated body liquid (SBF) and Tris-HC1 solution, respectively. The results show that the interactions exist between the inorganic and organic phase of the DCP/PAA composite. The polymerized reaction time has significant effects on the mechanical strength of PAA and DCP/PAA composite, and the viscosities of PAA increases with the increase of the reaction time, so the compressive strength is improved. The DCP/PAA composite has good bioactivity because the apatite could be formed on its surfaces after soaking into SBF, and the newly formed apatite is calcium deficient apatite with the Ca/P atom ratio of 1.59. The DCP/PAA composite could be degradable in the Tris-HCI solution, and intrinsic viscosities of PAA have effects on the degradation of the biocomposite. The pH value of the solution decreases slightly after the composite soaking into Tris HC1 solution at initial stages, but it is stable around 7.0-7.2 after 4 weeks later.
参考文献
[1] | Zhao X, Olsen I, Li H, et al. Reactive calcium-phosphate- containing poly (ester-co-ether) methacrylate bone adhesives: Chemical, mechanical and biological considerations [J]. Acta Biomater, 2010, 6: 845-855. |
[2] | 任力,季蓓红,黄志芳,等.新型骨-软骨-体化修复支架材料的制备[J].复合材料学报,2011,28(1):99-103. |
[3] | Wei J, Chen F, Shin J W, et al. Preparation and characterization of bioactive mesoporous wollastonite -- Polycaprolactone composite scaffold [J]. Biomaterials, 2009, 30: 1080-1088. |
[4] | CaiZY, Yang D A, Zhang fumarate)/( calcium sulphate/β N, et al. Poly(propylene - tricalcium phosphate ) composites: Preparation, characterization and in vitro degradation [J]. Aeta Biomater, 2009, 5: 628-635. |
[5] | Tamimi F, Kumarasami B, Doillon C, et al. Brushite-collagen composites for bone regeneration [J]. Acta Biomater, 2008, 4: 1315-1321. |
[6] | Dai C, Liu C, Wei J, et al. Molecular imprinted macroporous ehitosan coated mesoporous silica xerogels for hemorrhage control [J]. Biomaterials, 2010, 31: 7620-7630. |
[7] | Rinaudo M. Chitin and chitosan: Properties and applications[J]. Prog Polym Sei, 2006, 31: 603-632. |
[8] | 漆小鹏.聚乳酸一羟基乙酸共聚物/磷酸钙骨水泥多孔复合支架的制备[J].复合材料学报,2010,27(3):73-77. |
[9] | Zamiri P, Kuang Y, Sharma U, et al. The biocompatibility of rapidly degrading polymeric stents in porcine carotid arteries [J]. Biomaterials, 2010, 31: 7847-7855. |
[10] | Chlopek J, Morawska- chochol A, Paluszkiewicz C, et al. FTIR evaluation of PGLA - carbon fibres composite behaviour under 'in vivo' conditions [J]. J Mol Struct, 2008, 875 (1/2/3) : 101-107. |
[11] | Hudson J, Frith J, Donose B. A synthetic elastomer based on acrylated polypropylene glycol triol with tunable modulus for tissue engineering applications [J]. Biomaterials, 2010, 31:7937-7947. |
[12] | 牛旭锋,冯庆玲,王明波,等.微囊化壳聚糖/纳米羟基磷灰石/胶原/聚乳酸复合材料[J].复合材料学报,2009,26(2):143-148. |
[13] | Kalita S J, Verma S. Nanoerystalline hydroxyapatite bioceramic using microwave radiation: Synthesis and characterization [J]. Mater Sci and Eng C, 2010, 30: 295-303. |
[14] | Briak-BenAbdeslam H E, Ginebra M P, Vert M, et al. Wet or dry mechanochemical synthesis of calcium phosphates? Influence of the water content on DCPD - CaO reaction kinetics [J]. Acta Biomater, 2008, 4: 378-386. |
[15] | Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature [ J ]. Acta Biomater, 2010, 6: 1882-1894. |
[16] | Cui F Z, Wen H B, Su X W, Zhu X D. Microstructures of external periosteal callus of repaired femoral fracture in children [J]. J Struet Biol, 1996, 117(3) : 204-208. |
[17] | Jayaraman M, Subramanian M V. Preparation and characterization of two new composites: Brushite-collagen and collagen octa-calcium phosphate [J]. Med Sci Monit, 2002, 8: 481-487. |
[18] | WangXJ, Li Y B, Wei J, et al. Biocompatibility and osteogenesis of biomimetic nano - hydroxyapatite/polyamide composite scaffolds for bone tissue engineering [ J ]. Biomaterials, 2002, 23: 4787-4791. |
[19] | Duchene P, Qiu Q. Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function [J]. Biomaterials, 1999, 20:2287-2303. |
[20] | Wei J, Li Y B, Lau K T. Preparation and characterization of a nano apatite/polyamide6 bioactive composite [J]. Composites: Part B, 2007, 38: 301-305. |
[21] | Kokubo T, Ito S, Yamamuro T. Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W[J]. J Biomed Mater Res, 1990, 24: 331-343. |
[22] | Hench L L, Wilson J. Surface- active biomaterials [J ]. Science, 1984, 226: 630-635. |
[23] | Huan Z G, Chang J. Novel bioactive composite bone cements based on the 13 tricalcium phosphate-monocalcium phosphate monohydrate composite cement system[J]. Acta Biomater, 2009, 5: 1253-1264. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%