欢迎登录材料期刊网

材料期刊网

高级检索

采用显微硬度测试、电导率测试、拉伸力学性能测试以及透射电镜观察,研究时效温度和时效时间对2A14大规格铝合金棒材力学性能和电导率的影响规律。结果表明:在相同的时效时间下,合金电导率随时效温度升高而逐渐升高;在相同的时效温度下,合金电导率随时效时间的延长而逐渐升高。固溶态2A14合金中存在与Al 6 Mn晶体结构相近的Al 12(MnCu)3 Si 2粒子,此Al 12(MnCu)3 Si 2粒子在合金再结晶过程中影响晶界迁移,抑制晶粒在固溶过程中的长大效应;时效后,合金中主要的强化相为S'相,但在140℃(或低于400℃)时效12 h的合金中,强化相数量较少,合金性能与固溶态接近;经160℃、12 h时效后,合金具有较好的综合力学性能,其抗拉强度和屈服强度分别为509 MPa和452 MPa,伸长率为10.1%;在180℃、12 h时效条件下处理后,合金中的S'相会明显粗化,屈服强度和抗拉强度大幅下降,伸长率升高,表现出明显的过时效特征。

The effects of aging temperature and aging time on the mechanical properties and electrical conductivity of 2A14 aluminum alloy were investigated by microhardness test, electrical conductivity test, tensile test and transmission electron microscopy (TEM). The results show that the electrical conductivity of the sample increases gradually with increasing temperature or aging time when the aging time or aging temperature are constant. The Al 12 (MnCu) 3 Si 2 particles found in the solid solution 2A14 alloy has a similar crystal structure with Al6Mn, the Al12(MnCu)3Si2 particles affect the migration of grain boundary during recrystalline process and restrain the grain growth during solid solution. For the 2A14 alloy, theS'phase is the mainly strengthening precipitates. However, for the sample aged at 140℃ (or lower than 140℃) for 12 h, the mechanical properties are close to the sample in solution-treated condition due to less strengthening phase. After aging at 160℃ for 12 h, the alloy shows better combination mechanical properties, the ultimate tensile strength (UTS), yield strength (YS) and elongation are 509 MPa, 452 MPa and 10.1%, respectively. After aging at 180℃ for 12 h, with the increase of aging temperature and extension of aging time, the precipitate size ofS' phase increases and the mechanical properties decrease obviously, which is a typical phenomena of over aging.

参考文献

[1] CHEN J Z, ZHEN L Z, YANG S J, SHAO W Z, DAI S L. Investigation of precipitation behavior and related hardening in AA7055 aluminum alloy[J]. Materials Science and Engineering A, 2009, 500(1/2):34-42.,2009.
[2] 王涛,尹志民.高强变形铝合金的研究现状和发展趋势[J].稀有金属,2006(02):197-202.
[3] 李慧中,梁霄鹏,郭菲菲,李洲,焦岩,张新明.预时效温度对2519铝合金力学性能和电导率的影响[J].中国有色金属学报,2009(01):21-25.
[4] 熊柏青,李锡武,张永安,李志辉,朱宝宏,王锋,刘红伟.新型高强韧低淬火敏感性Al-7.5Zn-1.65Mg-1.4Cu-0.12Zr合金[J].中国有色金属学报,2009(09):1539-1547.
[5] 王丽.2A14-T6铝合金大规格棒材时效制度的研究[J].轻金属,2004(09):50-52.
[6] MENG X Y, DEREK O N. A TEM study of precipitates in an Al-Mn-Si alloy[J]. Metallography, 1998, 21(3):293-315.,1998.
[7] RIOS P R, FONSECA G S. Grain boundary pinning by Al6Mn precipitates in an Al-1wt%Mn alloy[J]. Scripta Materialia, 2004, 50(1):71-75.,2004.
[8] 刘志义,李云涛,刘延斌,夏卿坤.Al-Cu-Mg-Ag合金析出相的研究进展[J].中国有色金属学报,2007(12):1905-1915.
[9] VILLARS P, PRINCE A, OKAMOTO H. Handbook of ternary alloy phase diagrams[M]. Gloucester:ASM International, 1994:295-297.,1994.
[10] 权国政,王凤彪,刘莹莹,石彧,周杰.7075铝合金的变化型临界损伤因子[J].中国有色金属学报(英文版),2013(03):749-755.
[11] 叶凌英,吴懿萍,贾寓真,张新明,吴高龙.二次时效对2519A铝合金组织与性能的影响[J].中国有色金属学报,2014(03):624-630.
[12] 冯迪,张新明,刘胜胆,吴泽政,谈琦.7A55铝合金热变形的速率控制机制[J].中国有色金属学报(英文版),2014(01):28-35.
[13] MARLAUD T, MALKI B, HENON C, DESCHAMPS A, BAROUX B. Relationship between alloy composition, microstructure and exfoliation corrosion in Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2011, 53(10):3139-3149.,2011.
[14] 韩小磊,熊柏青,张永安,李志辉,朱宝宏,王锋.欠时效态7150合金的高温回归时效行为[J].中国有色金属学报,2011(01):80-87.
[15] 李国峰,张新明,李鹏辉. 7055合金在回归加热过程中组织演变[J].稀有金属材料与工程, 2011, 40(7):1295-1299. LI Guo-feng, ZHANG Xin-ming, LI Peng-hui. Microstructure evolution rules for aluminum alloy 7050 during retrogression heating up[J]. Rare Metal Materials and Engineering, 2011, 40(7):1295-1299.,2011.
[16] CINA B. Reducing the susceptility of alloys, particularly aluminium alloys, to stress cracking:USA, 3856584[P]. 1974-12-24.,1974.
[17] BAKAVOSA D, PRANGNELLA P B, BESB B, EBERL F. The effect of silver on microstructural evolution in two 2xxx series Al-alloys with a high Cu:Mg ratio during ageing to a T8 temper[J]. Materials Science and Engineering A, 2008, 491:214-223.,2008.
[18] 胡赓祥,钱苗根.金属学[M].上海:上海科学技术出版社, HU Geng-xiang, QIAN Miao-geng. Metal science[M]. Shanghai:Shanghai Science and Technology Press, 1980.,1980.
[19] 张新明,刘文军,刘胜胆,袁玉宝,邓运来.7050铝合金的TTP曲线[J].中国有色金属学报,2009(05):861-868.
[20] ÜNLÜ N, GABLE B M, SHIFLET G J, STARKE E A. The effect of cold work on the precipitation ofθ′ andΩ in a ternary Al-Cu-Mg alloy[J]. Metallurgical and Materials Transactions A, 2003, 34(12):2757-2769.,2003.
[21] PARK J K, ARDELL A J. Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651[J]. Metallurgical and Materials Transactions A, 1984, 15(8):1531-1543.,1984.
[22] 刘胜胆,张新明,游江海,黄振宝,张翀,张小艳.7055铝合金的TTP曲线及其应用[J].中国有色金属学报,2006(12):2034-2039.
[23] 李落星,王冠,刘杰,姚再起.Al-5Zn-2Mg合金在动态回复过程中的流变软化与微观组织演变[J].中国有色金属学报(英文版),2014(01):42-48.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%