欢迎登录材料期刊网

材料期刊网

高级检索

对钢液中各种固态化合物基底与形核相(δ-Fe和γ-Fe)的价电子结构进行了计算,基于静电作用理论和经验电子理论提出了基底和形核相之间的特征参量△ρ,并对△ρ与钢液非均质形核触媒作用的关系进行了分析和讨论.结果表明:基底和形核相之间的特征参量△ρ越大,非均质形核作用越好.

Solid compounds added into liquid steel can be utilized as substrates for primary ferrite phase or primary austenite phase nucleation during solidification. The effect of solid compounds promoting heterogeneous nucleation can be interpreted as an electrostatic effect between substrates and nucleated phases, with heterogeneous nucleation being considered as caused by the free energy change due to the redistribution of free electrons at the interface of substrate and nucleated phase. In order to evaluate the electrostatic effect, Yu's empirical electron theory was introduced. With concepts of lattice electron and atomic state hybridization brought forward by Yu, the bond length difference method was applied to calculate valence electron structures of substrates and nucleated phases. The electrostatic effect was quantified as a electron transfer rate at the interface of substrate and nucleated phase. Parameter Δρ was proposed to represent the electron transfer rate. In this study, 23 compounds commonly found in liquid steel were selected as the substrates, along with δ-Fe and γ-Fe as the nucleated phases. The valence electron structures of substrates and nucleated phases were calculated on the basis of crystal structure data obtained by experiments. Parameter Δρ between each substrate and δ-Fe/γ-Fe was calculated from the valence electron structures. The results show that, as the parameter Ap increases, the work of heterogeneous nucleation derived from experimental data decreases; the larger Δρ is, the more effective the substrate is for promoting nucleation.

参考文献

[1] Hu H Q.Solidification of Metals.Beijing:Metallurgical Industry Press,1985:84(胡汉起.金属凝固.北京:冶金工业出版社,1985:84)
[2] Tiller W,Takahashi T.Acta Metall,1969; 17:483
[3] Yu R H.Chin Sci Bull,1978; 23:217(余瑞璜.科学通报,1978;23:217)
[4] Yu R H.Chin Sci Bull,1981; 26:206(余瑞璜.科学通报,1981;26:206)
[5] Liang G F,Xu Z M,Qu D K,Song C J,Liu X Y,Li J G.J Shanghai Jiaotong Univ,2005; 39:1073(梁高飞,许振明,瞿迪柯,宋长江,刘向阳,李建国.上海交通大学学报,2005;39:1073)
[6] Liang G F,Song C J,Liu X Y,Xu Z M,Li J G.Rare Metal Mater Eng,2005; 34:1558(梁高飞,宋长江,刘向阳,许振明,李建国.稀有金属材料与工程,2005;34:1558)
[7] Zhang R L.The Empirical Electron Theory of Solids and Molecules.Changchun:Jilin Science and Technology Press,1993:231(张瑞林.固体与分子经验电子理论.长春:吉林科学技术出版社,1993:231)
[8] Kohlhaas R,Düner Ph,Schmitz-Pranghe N.Z Angew Phys,1967; 23:245
[9] Wyckoff R.Crystal Structures.New York:Interscience Publishers,1963:10
[10] Newnham R,de Haan Y.Z Kristallogr,1962; 117:235
[11] B(a)rnighausen H,Schiller G.J Less-Common Met,1985; 110:385
[12] Kummerle E,Heger G.J Solid State Chem,1999; 147:485
[13] Aldebert P,Traverse J.Mater Res Bull,1979; 14:303
[14] Morosin B.Phys Rev,1970B; 1:236
[15] Storms E,Krikorian N.J Phys Chem,1959; 63:1747
[16] Brauer G,Esselborn R.Z Anorg Allg Chem,1961; 309:151
[17] Wright A,Leadbetter A.Philos Mag,1975; 31:1391
[18] Houska C.J Phys Chem Solids,1965; 25:359
[19] Taylor A,Doyle N.J Appl Crystallogr,1971; 4:103
[20] Rice C,Robinson W.Acta Crystallogr,1977; 33B:1342
[21] Abrahams S,Bernstein J.J Chem Phys,1971; 55:3206
[22] Storms E,McNeal R.J Phys Chem,1962; 66:1401
[23] Brauer G,Schnell W.J Less-Common Met,1964; 6:326
[24] Aldebert P,Traverse J.J Am Ceram Soc,1985; 68:34
[25] Huang C,Song B,Mao J H,Zhao P.Sci China,2004; 34E:737(黄诚,宋波,毛璟红,赵沛.中国科学,2004;34E:737)
[26] Ershov G,Bychev V.Iz VUZ Chern Metall,1975:72
[27] Chernov B.Iz VUZ Chern Metall,1983:4
[28] Staronka A,Gotas W.Arch Eisenhütenwes,1979; 50:237
[29] van Muu B,Fenzke H W,Neuhof G.Neue Hüte,1984; 29:128
[30] Bramfitt B.Metall Trans,1970; 1:1987
[31] Ohashi T,Fujii H,Nuri Y,Asano K.Trans ISIJ,1977; 17:262
[32] Nakajima K,Hasegawa H,Khumkoa S,Mizoguchi S.Metall Mater Trans,2003; 34B:539
[33] Suzuki T,Inoue J,Koseki T.ISIJ International,2007; 47:847
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%