采用热力学计算以及XRD分析技术对18Mn-Si系TWIP钢的层错能进行了研究。结果表明,18Mn-Si系TWIP钢在淬火状态下为全奥氏体组织,拉伸变形以后出现变形孪晶和α马氏体相;该钢种的层错几率和层错能分别为2.6×10-3、17.3 mJ/m2,说明其在拉伸应力作用下将同时发生TWIP效应和TRIP效应,该结论与实验结果相吻合;对于18Mn-Si系TWIP钢而言,其在298 K条件下层错能(SFE)和层错几率(Psf)存在如下关系,即,SFE(298 K)=4.498×10-2/Psf。
Stacking fault energy of 18Mn-Si TWIP steel was investigated by thermodynamic calculations and X-ray diffraction.The results show that microstructure of 18Mn-Si TWIP steel after quenching is austenite.Mechanical twin and α-martensite are observed after tensile deformation.The values of stacking fault probability and stacking fault energy are 2.6×10-3 and 17.3 mJ/m2,respectively.Both TWIP and TRIP effects are predicted to occur after deformation according to the calculated value of stacking fault energy.Experimental results are consistent with the prediction.Relation between the stacking fault probability and stacking fault energy can be formulated as SFE=4.498×10-2/Psf for the 18Mn-Si TWIP steel at 298 K.
参考文献
[1] | 梁高飞,林常青,于艳,方园.高强塑性高锰钢的研究进展[J].铸造技术,2009(03):404-407. |
[2] | 马凤仓,冯伟骏,王利,张获.TWIP钢的研究现状[J].宝钢技术,2008(06):62-66. |
[3] | Ishida K;Nishizawa T .Effect of alloying elements on stability of epsilon iron[J].Trans Jpn lnst Met,1974,15(03):225-231. |
[4] | Sundman B;Jansen B;Andersen L O .The Thermo-cale databank system[J].CALPHAD-Computer Coupling of Phase Diagrams and Thermochemistry,1985,9(02):153-190. |
[5] | Grossel O;Frommeyer G;Derder C et al.Phase transformations and mechanical properties of Fe-Mn-Si-AITRIP-steels[J].Journal of Phys France C,1997,7(C5):378-383. |
[6] | Georg FROMMEYER;Udo BRUX;Peter NEUMANN .Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes[J].ISIJ International,2003(3):438-446. |
[7] | 张骥华,金学军,徐祖耀.Fe-Mn-Si合金γ→ε马氏体相变Ms的热力学预测[J].中国科学E辑,1999(05):385-390. |
[8] | Warren B E.X-ray Diffraction[M].Massachusett Addison-Wesley,1969:275-298. |
[9] | 王煜明;许顺生.X射线衍射学进展[M].北京:科学出版社,1986:65-88. |
[10] | 何刚;许二冬;戎咏华 等.X射线衍射法测定Fe-Mn-Si形状记忆合金层错几率的研究[J].功能材料,1999,20(03):155-157. |
[11] | Yonghua RONG,Gang He,Zhenghong GUO,Shipu CHEN,T.Y.Hsu.X-ray Peak-Shift Determination of Deformation Fault Probability in Fe-Mn-Si Alloys[J].材料科学技术学报(英文版),2002(05):459-461. |
[12] | Hirth J P .Thermodynamics of stacking faults[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1970,1(09):2367-2374. |
[13] | Wang X D;Huang B X;Rong Y H .Determination of stacking fault probability in fcc Fe-Mn-Si-A1 alloy by electron diffraction[J].Journal of Applied Physics,2007,101(09):1-5. |
[14] | S. Allain;J.-P. Chateau;O. Bouaziz;S. Migot;N. Guelton .Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):158-162. |
[15] | Dumay A;Chateau JP;Allain S;Migot S;Bouaziz O .Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(0):184-187. |
[16] | S. Curtze;V.-T. Kuokkala;A. Oikari .Thermodynamic modeling of the stacking fault energy of austenitic steels[J].Acta materialia,2011(3):1068-1076. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%