采用新颖的微弧氧化法(Microarc oxidation,MAO)在钛合金表面制备氧化钛基含钙磷的多孔复合生物陶瓷涂层.用扫描电镜(SEM)、电子能谱(EDAX)和X射线衍射(XRD)表征涂层的微观形貌、元素与相组成.采用纳米压痕仪(Nano Indenter)测试涂层的力学性能,并通过在模拟体液(Simulated body fluid,SBF)中培养对陶瓷涂层的生物活性进行了初步研究.结果表明,微弧氧化时间、电解液配比与电参数是影响涂层结构与Ca/P比值的关键工艺参数.涂层主要由锐钛矿和金红石相TiO2及钙磷化合物组成.涂层内层为致密的氧化钛层,并与钛合金基底成微冶金结合.涂层外层主要为含钙磷的化合物层,且涂层表面呈多微孔结构,有利于骨组织的长入并改善骨与植入体的结合.涂层的硬度为5.9GPa,弹性模量为102.5GPa.优化工艺参数下(氧化时间5min,占空比8%)制备的涂层,在模拟体液中培养8周有明显的羟基磷灰石沉积.羟基磷灰石在微孔内或孔边缘位置首先形核并长大,并逐渐向周边扩展生成羟基磷灰石层,体现了多孔含钙磷生物陶瓷涂层良好的诱骨生长特性.
参考文献
[1] | 陆峰.人体植入金属腐蚀与防护研究的进展[J].材料保护,1995(06):21. |
[2] | Lemons J E .[J].Clinical Orthopaedics & Related Research,1988,235:220. |
[3] | Cooke F W .[J].Clinical Orthopaedics & Related Research,1992,276:135. |
[4] | Koutsopoulos S .[J].Journal of Biomedical Materials Research,2002,62:600. |
[5] | Yang Y;Ong J L .[J].Journal of Biomedical Materials Research,2003,64:509. |
[6] | Wolke J G;Van der Waerden J P et al.[J].BIOMATERIALS,2003,24:2623. |
[7] | Fernandez P J M;CleriesL;Martinez E et al.[J].Biomaterials,2001,22:2171. |
[8] | Liu D;Yang Q;Troczynski T .[J].Biomaterials,2002,23:691. |
[9] | Ma J;Wang C;Peng KW .Electrophoretic deposition of porous hydroxyapatite scaffold.[J].Biomaterials,2003(20):3505-3510. |
[10] | Habibovic P et al.[J].Journal of the American Ceramic Society,2002,85:517. |
[11] | Yerokhin A L;Nie X;Leyland A et al.[J].Surface and Coatings Technology,199?,122:73. |
[12] | Kim HW;Koh YH;Li LH;Lee S;Kim HE .Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method.[J].Biomaterials,2004(13):2533-2538. |
[13] | Mayo M J;Siegel R W;Narayanasamy A .[J].Journal of Materials Research,1990,5(05):73. |
[14] | Yang B C;Uchida M;Kim H M et al.[J].BIOMATERIALS,2004,25:1003. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%