根据网络碳纳米管/环氧树脂(ReticulateCarbonNanotubes/Epoxy,R-CNTs/EP)复合材料的结构特点,假设R-CNT均匀分布,建立了R-CNT/EP复合材料的三维有限元模型。利用有限元法分析了R-CNT/EP复合材料单胞的细观变形,用二尺度展开法计算了R-CNT/EP复合材料在不同应变下的有效刚度系数。分析结果表明:R-CNT/EP复合材料为各向异性材料,沿蒸汽流动方向的强度远大于其他方向的强度,且R-CNT的形状对R-CNT/EP复合材料的力学性能有显著影响,各刚度系数以及杨氏模量在Y型接头处各角相等时最大;R-CNT的体积分数对R-CNT/EP复合材料的力学性能有显著影响,各有效性能均随着R-CNT体积分数的增大而增大,但是增大程度不同。
A three dimensional microscopic model of the reticulate carbon nanotube/epoxy (R CNT/EP) composites was established according to its structural characteristics based on the assumption of the uniform distribution of R-CNT. The effective stiffness coefficients and Young's modulus of the R-CNT/EP composite were calculated by two-scale expansion method. It is shown that the mechanical properties of the R-CNT/EP composite are anisotropic and the strength along the direction of the vapor flow is much higher than that in other directions. The shape of the R-CNT plays an important role on the mechanical properties of the R-CNT/EP composite, and the effective stiffnesses and Youngrs modulus of the R-CNT/EP composites are the highest when the angles of the Y- junctions are equal. All of the effective stiffnesses and Young~s modulus of the R-CNT/EP composites are enhanced with the increase of volume fraction of R-CNT, but the influence degrees are different.
参考文献
[1] | 何才启,张俊乾.碳纳米管复合材料的应力分析[J].复合材料学报,2008,25(5):120-124. |
[2] | Scuseria G E. Negative curvature and hyperfullerenes[J].Chemical Physics Letters, 1992, 195(5/6): 534-536. |
[3] | Menon M, Srivastava D. Carbon nanotube "T junctions"Nanoscale metal- semiconductor - metal contact devices [J]. Physical Review Letters, 1997, 79(22): 4453-4456. |
[4] | Andriotis A N, Menon M, Srivastava D. Rectification properties of carbon nanotube " Y- junctions" [J]. Physical Review Letters, 2001, 87(6): 066802. |
[5] | TerronesM, Banhart F, Grobert N, et al. Molecular junctions by joining single- walled carbon nanotubes[J]. Physics Review Letters, 2002, 89(7): 075505. |
[6] | Srivastava D, Menon M, Ajayan P M. Branched carbon nanotube junctions predicted by computational nanotechnology and fabricated through nanowelding [ J ]. Journal of Nanoparticle Research, 2003, 5: 395-400. |
[7] | Coluci V R, Dantas S O, Jorio A, et al. Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations [J]. Physical Review B, 2007, 75: 075417. |
[8] | Coluci V R, Galvao D S, Jorio A, et al. Geometric and electronic structure of carbon nanotube networks: 'Super'- carbon nanotubes [J].Nanotechnology, 2006, 17: 617-621. |
[9] | Romo-Herrera J M, Terrones M, Terrones H, et al. Covalent 2D and 3D networks from 1D nanostruetures: Designing new materials [J]. Nano Letters, 2007, 7(3): 570-576. |
[10] | Romo-Herrera J M, Terrones M, Terrones H, et al. Electron transport properties of ordered networks using carbon nanotubes [J]. Nanotechnology, 2008, 19(31): 315704. |
[11] | Wang M, Qiu X M, Zhang X. Mechanical properties of super honeycomb structures based on carbon nanotubes [J]. Nanotechnology, 2007, 18(7)~ 075711. |
[12] | Coluci V R, Pugno N M, Dantas S O, et al. Atomistic simulations of the mechanical properties of 'super' carbon nanotubes [J]. Nanotechnology, 2007, 18: 335702. |
[13] | Qin Z , Feng X Q, Zou J, et al. Superior flexibility of super carbon nanotubes- molecular dynamics simulations[J]. Applied Physics Letters, 2007, 91(4): 043108. |
[14] | Li Y, Qiu X M, Yang F, et al. The effective modulus of super carbon nanotubes predicted by molecular structure mechanics [J]. Nanotechnology, 2008, 19: 225701. |
[15] | Tserpes K I, Papanikos P. Continuum modeling of carbon nanotube- based super- structures [J]. Composite Structures, 2009, 91(2): 131-137. |
[16] | 马传国,于英俊.碳纳米管的偶联剂修饰及其在环氧树脂复合材料中的应用[J].复合材料学报,2010,27(3):22-28. |
[17] | Manashi N, Satishkumar B C, Govindaraj A, et al. Production of bundles of aligned carbon and carbon- nitrogen nanotubes by the pyrolysis of precursors on silica- supported iron and cobalt catalysts [J]. Chemical Physics Letters, 2000, 322(5) : 333-340. |
[18] | Ting J M, Chang C C. Multijunction carbon nanotube network [J].Applied Physics Letters, 2002, 80: 324-325. |
[19] | Heyning O T, Bernier P, Glerup M. A low cost method for the direct synthesis of highly Y- branched nanotubes [J]. Chemical Physical Letters, 2005, 409: 43-47. |
[20] | Huang S M, Dai L M, Mau A. Synthesis and structures of aligned branched carbon nanotubes produced by pyrolysis of iron( Ⅱ ) phthalocyanine [J]. Physica B, 2002, 323: 336-338. |
[21] | Wei D C, Liu Y Q, Cao L C, et al. A new method to synthesize complicated multibranched carbon nanotubes with controlled architecture and composition [J]. Nanoletters, 2006, 6: 186-192. |
[22] | Song L, Ci L J, Lv L, et al. Directly synthesis of a macroscale single- walled carbon nanotube non- woven material [J]. Advanced Materials, 2004, 16(17): 1529-1534. |
[23] | Joseph F, Aubuchon J F, Chen L H, et al. Multibranching carbon nanotubes via self-seeded catalysts [J]. Nano Letters, 2006, 6: 324-328. |
[24] | Ma W J, Song L, Yang R, et al. Directly synthesized strong, highly conducting, transparent single- walled carbon nanotube films [J].NanoLetters, 2007, 7(8): 2307-2311. |
[25] | Jiang F T, Fang Y Z, Liu Y, et al. Paper-like 3-dimensional carbon nanotubes (CNTs) - microfiber hybrid: A promising macroscopic structure of CNTs [J]. Journal of Materials Chemistry, 2009, 19: 3632-3637. |
[26] | Zhang M, Fang S L, Zakhidov A A, et al. Strong, transparent, multifunctional, carbon nanotube sheets [J]. Science, 2005, 309(5738): 1215-1219. |
[27] | Koziol K, Vilatela J, Moisala A, et al. High- performance carbonnanotube fiber [J]. Science, 2007, 318(5858): 1892- 1895. |
[28] | Ma W J, Liu L Q, Zhang Z, et al. High-strength corrlposite fibers: Realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings [J]. Nano Letters, 2009, 9(8): 2855-2861. |
[29] | Yang Q S, Becker W. Numerical investigation for stress, strain and energy homogenization of orthotropic composite with periodic microstructure and non - symmetric inclusions [J]. Computational Materials Science, 2004, 31(1/2) : 169-180. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%