采用Gleeble-1500热模拟试验机对新型镍基粉末高温合金FGH98 I进行了单向热压缩变形试验,研究了其在变形温度为950~1150℃,应变速率为0.0003~1 s-1条件下的热变形行为,建立和对比了不同应变量下的应变速率敏感因子m图和功率耗散效率因子η图,并对热加工图进行了组织验证.结果表明:合金的流变应力随着变形温度的升高和应变速率的降低而降低;不同应变量下的η图与m图相似,随着应变量的增大,峰区的η与m值逐渐升高;当真应变为0.5时,在变形温度为1050℃,应变速率为0.0003 s-1条件下,η与m达到峰值,分别为40%和25%,合金发生了动态再结晶,晶粒细化且无内裂纹.该结果为FGH98 I合金实际热加工工艺的优化提供了理论依据.
参考文献
[1] | Alniak M O;Bedir F .[J].Materials Science and Engineering,2006,A 429:295. |
[2] | Krueger D D;Kissinger R D;Menzies R G.[A].Warrendale:TMS,1992:277. |
[3] | Gabb T P;Ellis D L;Kenneth M et al.NASA/TM-2004-213066[R].Washington:National Aeronautics and Space Administration,2004. |
[4] | 胡本芙;章守华 .[J].Transactions of Metal and Heat Treatment(金属热处理学报),1997,18(03):28. |
[5] | 刘建涛;张义文;Tao Yu(陶宇) et al.[J].Transactions of Materials and Heat Treatment(材料热处理学报),2006,27(05):46. |
[6] | Gabb T P;Gayda J .NASA/TM-2001-211218[R].Washington:National Aeronautics and Space Administration,2001. |
[7] | Lemsky J .NASA/CR-2004-212950[R].Washington:National Aeronautics and Space Administration,2004. |
[8] | Gabb T P;Gayda J .NASA/TM-2005-213649[R].Washington:National Aeronautics and Space Administration,2005. |
[9] | 吴凯;刘国权;Hu Benfu(胡本芙) et al.[J].Journal of University of Science and Technology Beijing,2009,31(06):722. |
[10] | Gabb T P;Gayda J;Telesman J et al.NASA/TM-003-212086[R].Washington:National Aeronautics and Space Administration,2003. |
[11] | Radavich J;Carneiro T;Furrer D.[A].Shanghai:Chinese Society for Metals,2007:114. |
[12] | 牛济泰.Physical Modeling Technology in Materials and Hot Working Field(材料和热加工领域的物理模拟技术)[M].北京:国防工业出版社,1999:76. |
[13] | Omar A A;Cabrera J M;Prado J M .[J].Scripta Materialia,1996,34(08):1303. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%