以钛酸丁酯为原料、聚乙二醇为稳定剂,采用溶胶-凝胶法制备含球形TiO2纳米粒子的溶胶,将其与碳前驱体聚糠醇均匀混合后涂敷于多孔Al2 O3基体表面,最后经炭化处理制得TiO2-C/Al2 O3复合膜。采用SEM、TEM、XRD、粒径分析等手段对样品进行表征,并测定炭膜对CO2、N2和CH4的渗透性能。结果表明,聚乙二醇能有效控制钛酸丁酯的水解,不仅有利于形成粒径小而均匀的球形纳米TiO2粒子,而且可促进TiO2粒子在聚糠醇中的均匀分散。 TiO2粒子的掺杂明显提高了炭膜的CO2渗透率及渗透选择性。其中,CO2渗透率、CO2/N2选择性和CO2/CH4选择性分别可达7.0′10-8 mol·m-2·s-1· Pa-1、34和64。 TiO2的掺杂有利于产生更多渗透通道,但也会阻断炭材料本身的渗透通道,因此TiO2的掺杂量存在最佳范围。
A TiO2 sol was prepared from tetrabutyltitanate using polyethylene glycol as a stabilizer, and this was homogeneously mixed with polyfurfuryl alcohol, dip-coated on a porous Al2 O3 substrate and carbonized at 700℃ for 4 h to produce TiO2-doped car-bon membranes. SEM, TEM, XRD and granulometry were used to characterize the membranes, and their permeation performance for CO2 , N2 and CH4 were tested. It was found that polyethylene glycol is effective in controlling the hydroxylation of the tetrabu-tyltitanate. This not only favored the formation of spherical TiO2 nanoparticles with a small size and narrow size distribution but also improved the homogeneity of the dispersion of the TiO2 nanoparticles in polyfurfuryl alcohol. The doping of the membranes with TiO2 nanoparticles greatly improved the CO2 permeance and permselectivity. The TiO2 doping helps to create diffusion paths, but it may also block the pores in the carbon matrix. Therefore, the CO2 permeance reached a maximum of 7. 0×10-8 mol·m-2·s-1·Pa-1 with a mass ratio of TiO2 sol to polyfurfuryl alcohol of 2, where the CO2/N2 and the CO2/CH4 selectivities were 34 and 64, respec-tively.
参考文献
[1] | 时均;袁权;高从堦.膜技术手册[M].北京:化学工业出版社,2001 |
[2] | Pratibha Pandey;R.S.Chauhan .Membranes for gas separation[J].Progress in Polymer Science,2001(6):853-893. |
[3] | Evan J.Granite;Thomas O'Brien .Review of novel methods for carbon dioxide separation from flue and fuel gases[J].Fuel Processing Technology,2005(14/15):1423-1434. |
[4] | Koros W J;Mahajan R .Pushing the limits on possibilities for large scale gas separation which strategies[J].Journal of Membrane Science,200,175(02):181-196. |
[5] | 陈勇;王从厚;吴鸣.气体膜分离技术与应用[M].北京:化学工业出版社,2004 |
[6] | Richard W. Baker .Future Directions of Membrane Gas Separation Technology[J].Industrial & Engineering Chemistry Research,2002(6):1393-1411. |
[7] | 邱海鹏,刘朗.炭分离膜[J].新型炭材料,2003(01):80-80. |
[8] | Yi Li;Tai-Shung Chung .Exploratory development of dual-layer carbon-zeolite nanocomposite hollow fiber membranes with high performance for oxygen enrichment and natural gas separation[J].Microporous and mesoporous materials: The offical journal of the International Zeolite Association,2008(1/3):315-324. |
[9] | 李新贵,刘睿,黄美荣.炭膜制备及其高效氧氮分离性能[J].新型炭材料,2004(01):69-76. |
[10] | Chan Wang;Jian Yu;Xiaojuan Hu;Yan Huang .An improvement of the hydrogen permeability of C/Al_2O_3 membranes by palladium deposition into the pores[J].International journal of hydrogen energy,2013(25):10819-10825. |
[11] | Wang C;Huang Y .Towards fabrication of low-cost carbon/ce-ramics membranes:substrate modification[J].Adv Mater Res,2012,457-458:372-376. |
[12] | Fritsch D.;Peinemann KV. .NOVEL HIGHLY PERMSELECTIVE 6F-POLY(AMIDE-IMIDE)S AS MEMBRANE HOST FOR NANO-SIZED CATALYSTS[J].Journal of Membrane Science,1995(1):29-38. |
[13] | Park HB.;Suh IY.;Lee YM. .Novel pyrolytic carbon membranes containing silica: Preparation and characterization[J].Chemistry of Materials,2002(7):3034-3046. |
[14] | Li Y;White TJ;Lim SH .Low-temperature synthesis and microstructural control of titania nano-particles[J].International Journal of Quantum Chemistry,2004(4/5):1372-1381. |
[15] | Look JL.;Zukoski CF. .COLLOIDAL STABILITY AND TITANIA PRECIPITATE MORPHOLOGY - INFLUENCE OF SHORT-RANGE REPULSIONS[J].Journal of the American Ceramic Society,1995(1):21-32. |
[16] | 刘庆岭 .功能炭膜的设计、制备及其气体分离性能[D].大连理工大学,2008. |
[17] | Barringer E A;Bowen H K .Formation,packing,and sintering of monodisperse TiO2 powders[J].Journal of the American Ceramic Society,1982,65(12):199-201. |
[18] | Xuchuan Jiang;Thurston Herricks;Younan Xia .Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization[J].Advanced Materials,2003(14):1205-1209. |
[19] | WANG Hong'en,LI Bo,YAN Zaoxue,LU Zhouguang,CHENG Ruijing,QIAN Dong.Fast synthesis of monodisperse TiO2 submicrospheres via a modified sol-gel approach[J].稀有金属(英文版),2008(01):1-4. |
[20] | 黄彦;王婵 .一种复合碳分子筛膜及其制备方法和应用[P].China Patent:CN 102 527 259A,2012. |
[21] | Wang C;Hu X;Yu J et al.Intermediate gel coating on macroporous Al2 O3 substrate for fabrication of thin carbon membranes[J].Ceramics Int,2014,40(07):10367-10373. |
[22] | Jian Yu;Xiaojuan Hu;Yan Huang .A modification of the bubble-point method to determine the pore-mouth size distribution of porous materials[J].Separation and Purification Technology,2010(3):314-319. |
[23] | Huang Y;Dittmeyer R .Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion[J].Journal of Membrane Science,2006(1/2):296-310. |
[24] | 戚文彬 .聚氧乙烯型非离子表面活性剂的分析应用[J].化学试剂,1980,3:19-23. |
[25] | Sanchez R.;Rieumont J.;Hernandez C. .Furfuraldehyde resin pyrolysis in a closed system[J].Polymer Degradation and Stability,1998(3):513-517. |
[26] | Arun Kumar Itta;Hui-Hsin Tseng .Hydrogen separation performance of CMS membranes derived from the imide-functional group of two similar types of precursors[J].International journal of hydrogen energy,2011(14):8645-8657. |
[27] | Fabrication and characterization of poly(phenylene oxide)/ SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation[J].International journal of hydrogen energy,2010(13):6971-6983. |
[28] | Wei W;Qin GT;Hu HQ;You LB;Chen GH .Preparation of supported carbon molecular sieve membrane from novolac phenol-formaldehyde resin[J].Journal of Membrane Science,2007(1/2):80-85. |
[29] | Shiflett MB.;Foley HC. .On the preparation of supported nanoporous carbon membranes[J].Journal of Membrane Science,2000(1/2):275-282. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%