研究了Ti-600合金在3种温度(550、600、650℃)、5种应力(150、200、250、300、350 MPa)下的蠕变性能,并分析了硅化物对合金蠕变性能的影响。研究结果表明, Ti-600合金具有较小的稳态蠕变速率及较大的蠕变激活能,反映出该合金具有较好的蠕变抗力。当温度升高、应力增大时, Ti-600合金的稳态蠕变速率增大。600℃下,当蠕变应力高达350 MPa时, Ti-600合金的稳态蠕变速率低至3.72×10-7 s-1。 Ti-600合金的蠕变激活能最高可达574.6 kJ· mol-1,最低为332.7 kJ· mol-1。在蠕变过程中, Ti-600合金内析出了S2型( TiZr)6 Si3硅化物,能够钉扎位错、阻碍位错滑移,提高合金的蠕变抗力。
Creep tests were carried out on Ti-600 alloy at the temperature of 550 ℃, 600 ℃, 650 ℃, and with the stress of 150 MPa, 200 MPa, 250 MPa, 300 MPa and 350 MPa, respectively.Creep property of Ti-600 alloy and in-fluence of silicide on the creep property for the alloy were also investigated .The results indicated that the value of steady state creep rate is small , and the activation energy is relatively high , which means the alloy possesses favorite creep resistance .The steady state creep rate will increase with the increment of temperature and stress during the creep process.And the steady state creep rate is as low as 3.72 ×10 -7 s-1 for the alloy creep at 600 ℃with the stress of 350 MPa.The calculated highest creep activation energy for the alloy is 574.6 kJ· mol -1 , and the lowest one is 332.7 kJ· mol -1 .During the creep process , slip would be impeded , and dislocations would also be pinned by the pre-cipitated S2 typed silicides ((TiZr)6Si3), then the motion of dislocations would be hindered , which has contribution to the higher creep resistance , and the higher values of activation energy .
参考文献
[1] | 洪权,张振祺,杨冠军,罗国珍.Ti600合金的热机械加工工艺与组织性能[J].金属学报,2002(z1):135-137. |
[2] | Zeng Liying;Zhao Yongqing;Hong Quan .High cycle fatigue property of Ti-600 alloy at ambient temperature[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2011(5):2081-2086. |
[3] | Cui WF.;Liu CM.;Zhou L.;Luo GZ. .Characteristics of microstructures and second-phase particles in Y-bearing Ti-1100 alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):192-197. |
[4] | Tetsuya Matsunaga;Tatsuya Kameyama;Kohei Takahashi .Constitutive Relation for Ambient-Temperature Creep in Hexagonal Close-Packed Metals[J].Materials transactions,2009(12):2858-2864. |
[5] | Zeng L Y;Hong Q;Yang G J et al.Tensile and creep properties of Ti-600 alloy[J].Transactions of Nonferrous Metals Society of China,2007,17(z1):522-525. |
[6] | 陈卫峰,石玉峰.Ti6242S合金中硅化物出现的条件[J].稀有金属材料与工程,1999(05):323. |
[7] | Singh A K;Roy T;Ramachandra C .Microstructural stability on aging of an α+βtitanium alloy:Ti-6Al-1.6Zr-3.3Mo-0.30 Si[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1996,27(05):1167-1173. |
[8] | 蔡建明;郝孟一;李学明 等.Ti-60合金中硅化物的析出行为[J].金属学报,1999,35(z1):198-201. |
[9] | 曾立英,杨冠军,洪权,赵永庆.Ti-600合金的高温蠕变行为[J].材料热处理学报,2011(02):81-85. |
[10] | Vagarali S S;Landon T G .Deformation mechanisms in H.C.P metals at elevated temperatures-Ⅰ.Creep behavior of magnesium[J].ACTA METALLURGICA SINICA,1981,129(01):1969-1982. |
[11] | Mishra H;Satyanarayana D V V;Nandy T K et al.Effect of trace impurities on the creep behavior of a near αtitanium alloy[J].Scripta Materialia,2008,59(06):591-594. |
[12] | 张振祺,洪权,杨冠军,罗国珍.Ti600高温钛合金蠕变前后的组织变化[J].材料工程,2000(10):18-21. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%