确定性混沌理论能够深刻揭示气液两相流压力波动的非线性特征.本文研究了确定性混沌不变量-分维数、关联维数、Kolmogorov熵在不同流型的变化以及折算液速的影响规律.实验结果表明压力波动的混沌特性与流型有关,分维数除了在高气速的环状流,在其它流型内都小于1.5,折算液速的大小强烈影响压力波动的混沌特性.
参考文献
[1] | Saether G;Bendiksen K;Muller J et al.The Fractal Statistics of Liquid Slug Lengths[J].International Journal of Multiphase Flow,1990,16(06):1117-1126. |
[2] | Y. Cai;M. W. Wambsganss;J. A. Jendrzejczyk .Application of chaos theory in identification of two-phase flow patterns and transitions in a small, horizontal, rectangular channel[J].Journal of Fluids Engineering: Transactions of the ASME,1996(2):383-390. |
[3] | Franca F;Acikgoz M;Lahey R T Jr et al.The Use of Fractal Techniques for Flow Regime Iidentification[J].International Journal of Multiphase Flow,1991,17(04):545-552. |
[4] | Langford H M;Beasley D E;Ochterbeck J M.Chaos Analysis of Pressure Signals in Upward Air-water Flows[A].ICMF'98 Lyon France,1998 |
[5] | 黄海,黄轶伦,张卫东.气固流化床压力脉动信号的相关结构模型与分析[J].化工学报,1999(06):812-817. |
[6] | Mosdorf R;Poniewski M;Ulbrich R.Fractal Analysis in Two-Phase Flow[A].Kielce:Samodzielna Sekcja Poligrafii Politechniki Swietokrzyskiej,1999:173-184. |
[7] | Ishii M;Mishima K .Two-Fluid Model and Hydrodynamic Constitutive Relations[J].Nuclear Engineering and Design,1984,82:107-126. |
[8] | Broomhead D S;King G P .Extracting Qualitative Dynamics from Experimental Data[J].Physica,1986,20D:217-236. |
[9] | Bai Bofeng;Wu Tiejun;Guo Liejin.Two-phase Flow Pattern and Pressure Fluctuation of Two-phase Upward Flow in a U-type Tube[A].Xi'an:Xi'an Jiaotong University Publ,1999:187-194. |
[10] | Ohba K;Nagae K .Characteristics and Behavior of the Interfacial Wave on the Liquid Film in a Vertically Upward Air-Water Two-Phase Annular Flow[J].Nuclear Engineering and Design,1993,141:17-25. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%