稀有金属材料与工程,
2013, 42(6): 1287-1290.
无钴LaNi4.1Al0.3Mn0.4Si0.2Fex(x=0~0.4)储氢合金性能
马小波
1,
, 吴怡芳
2,
, 柳永宁
3,
, 陈元振
4,
, 李成山
5,
关键词:
储氢合金
, 放电容量
, 循环稳定性
Properties of Co-Free LaNi4.1Al0.3Mn0.4Si0.2Fex (x=0~0.4)Hydrogen Storage Alloys
Ma Xiaobo
1,
, Wu Yifang
2,
, Liu Yongning
3,
, Chen Yuanzhen
4,
, Li Chengshan
5,
Keywords:
hydrogen storage alloys
, discharge capacity
, cycling stability
采用电弧熔炼制备LaNi4.1Al0.3Mn0.4Si0.2Fex (x=0~0.4)储氢合金,借助XRD、SEM等分析LaNi4.1Al0.3Mn0.4Si0.2Fex合金的晶体结构和相组成,并研究合金的电化学性能.结果表明:合金主要由LaNi5单相组成,当x≥0.1时,在LaNi5主相上分布着些许灰色的第二相.随着LaNi4.1Al0.3Mn0.4Si0.2Fex(x=0~0.4)合金中Fe的加入量增加,合金最大放电容量由295.4 mAh/g (x=0)降低到278.2 mAh/g (x=0.4),活化次数也由10次增加到18次.同时合金200次循环后的容量保持率却由66.85% (x=0)提高到93.33% (x=0.4).
参考文献
梁国立","id":"cad2ea32-298d-435f-bcf2-881cdf757a67","originalAuthorName":"梁国立"},{"authorName":"邓赛文","id":"aa916ba4-2ca6-4826-939f-891f7b2a560d","originalAuthorName":"邓赛文"},{"authorName":"吴晓军","id":"3ef555e6-eb07-454b-aa6a-4e5003903cec","originalAuthorName":"吴晓军"},{"authorName":"甘露","id":"eb68b998-60ac-4727-a15c-2739609e78e2","originalAuthorName":"甘露"}],"doi":"10.3969/j.issn.1001-0777.2003.06.002","fpage":"4","id":"76618156-82d1-42a3-a732-edf63ad2ce9a","issue":"6","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"efa777dd-43c1-4be2-a8ce-c6d110779e7f","keyword":"X射线荧光","originalKeyword":"X射线荧光"},{"id":"2378c1bf-4789-4c32-97ca-d458be6d9c7d","keyword":"检出限","originalKeyword":"检出限"},{"id":"0353b8bc-439c-4258-9be0-4765d468363c","keyword":"相对标准偏差","originalKeyword":"相对标准偏差"}],"language":"zh","publisherId":"wlcs200306002","title":"X射线荧光痕量元素分析的测定限问题","volume":"","year":"2003"},{"abstractinfo":"本文介绍了φ1200RPM管梁弯曲试验以及针对RPM管在工程应用中如何控制其梁弯曲变形进行了探讨.","authors":[{"authorName":"周仕刚","id":"ef0e0af5-3608-4e35-94e9-56ada439fd3f","originalAuthorName":"周仕刚"},{"authorName":"沈星万","id":"af4a4eef-138a-4d9e-a4e2-a899e3ef53d7","originalAuthorName":"沈星万"},{"authorName":"高永飞","id":"d95025bf-0ccd-4558-86a1-ddd5081ca799","originalAuthorName":"高永飞"},{"authorName":"薛元德","id":"5d1b5804-c116-401a-949d-d8090dd1667b","originalAuthorName":"薛元德"},{"authorName":"沈碧霞","id":"dbfd76bf-ad83-4894-8440-bb1cd3073b6b","originalAuthorName":"沈碧霞"}],"doi":"10.3969/j.issn.1003-0999.2001.04.002","fpage":"6","id":"8aa9a3bf-8770-44f6-9fa0-0da468f3f16c","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"361621c7-8baf-40d0-a2aa-b7e89d23a500","keyword":"RPM管梁弯曲应变控制","originalKeyword":"RPM管梁弯曲应变控制"}],"language":"zh","publisherId":"blgfhcl200104002","title":"RPM管梁弯曲试验及其梁弯曲应变的工程控制","volume":"","year":"2001"},{"abstractinfo":"考虑内部热传导,研究了格栅夹层梁一侧受热后的弯曲变形.认为变形后夹层结构中间腹板无弯曲.利用格栅夹层梁结构上的周期性,通过胞元结构的内力平衡方程和变形协调关系,得到了胞元两端内力和位移的关系.引入传递矩阵,建立了夹层梁内力和变形随温度变化的表达式.应用所建立的模型计算了悬臂格栅夹层梁在其上表面受热后的变形.在格栅夹层梁包含的胞元数量较多、腹板高度较小且厚度与表板厚度相近的情况下,由本文模型计算得到的挠度结果与有限元结果吻合较好.","authors":[{"authorName":"张锐","id":"c6c3af1d-19b4-4729-942f-34c30bb9e75c","originalAuthorName":"张锐"},{"authorName":"尚新春","id":"69755ca9-4b6b-4100-a234-744bfc229840","originalAuthorName":"尚新春"}],"doi":"","fpage":"1558","id":"86e647d2-0f7e-4323-95e0-0fa2e791822a","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a72b255f-f9e8-4f4d-a7b4-f5524735c6a1","keyword":"格栅夹层结构","originalKeyword":"格栅夹层结构"},{"id":"7e7cd176-601e-43e8-ac15-eb4aa10f83df","keyword":"热弯曲","originalKeyword":"热弯曲"},{"id":"e90c6179-a561-4b15-843b-e5468d92a3c2","keyword":"变形","originalKeyword":"变形"},{"id":"fc685ed2-aecd-46ba-991e-b227b546ec7d","keyword":"胞元结构分析","originalKeyword":"胞元结构分析"},{"id":"a50b9198-c7f6-4bc3-9dbd-d1472a0e4905","keyword":"传递矩阵","originalKeyword":"传递矩阵"}],"language":"zh","publisherId":"fhclxb201406024","title":"格栅夹层梁的热弯曲变形","volume":"31","year":"2014"},{"abstractinfo":"提出一种基于Layerwise层合理论的复合阻尼结构梁单元用于计算嵌入多阻尼层的复合阻尼结构梁.通过与NASTRAN软件的计算结果进行对比,证明该梁单元满足层间位移、应力连续条件并避免了剪切自锁,并且具有单元数量和节点数量少、计算精度高的优点.","authors":[{"authorName":"张醒","id":"ff0c1c77-1f73-430f-80c9-7ac548963af2","originalAuthorName":"张醒"},{"authorName":"徐超","id":"9f3a9025-a671-4ef8-947a-785c9cf15615","originalAuthorName":"徐超"},{"authorName":"李莉","id":"892ad297-23ff-445b-9a38-6dec3ad8295d","originalAuthorName":"李莉"},{"authorName":"游少雄","id":"c77c795d-009f-4463-bb96-c3c060a436d4","originalAuthorName":"游少雄"}],"doi":"10.3969/j.issn.1007-2330.2007.06.004","fpage":"11","id":"664c6174-9e05-43e3-8f6a-f6c84c0aa95b","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"a5779117-e732-4c40-bb8c-e607ebce7bba","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"830a5808-ca57-4344-a395-516126b10ce6","keyword":"有限元","originalKeyword":"有限元"},{"id":"f38e2ee2-5889-4df6-b7be-a335aa0452e1","keyword":"层合理论","originalKeyword":"层合理论"}],"language":"zh","publisherId":"yhclgy200706004","title":"复合阻尼结构梁动力特性分析","volume":"37","year":"2007"},{"abstractinfo":"用金相、扫描电镜等分析方法,对开裂的客车纵梁进行了分析.结果表明,纵梁钢材冶金质量差,钢中存在较多的非金属夹杂物,降低了钢的力学性能;纵梁钢板外侧表面遭受外来敲击造成的条状凹陷伤痕,钢板热轧工艺不当,表层存在大块氧化夹杂物及微裂纹等热轧工艺缺陷,是导致其发生纵向开裂的主要原因.","authors":[{"authorName":"陈康敏","id":"315cd936-0248-4241-8af6-eaa160b1490d","originalAuthorName":"陈康敏"},{"authorName":"曹芬","id":"44330ccf-5d59-45e5-b0bf-f47675b016f4","originalAuthorName":"曹芬"},{"authorName":"潘励","id":"ebf9d54e-7ead-4be7-861c-0cb720b469af","originalAuthorName":"潘励"}],"doi":"10.3969/j.issn.1000-3738.2003.07.017","fpage":"52","id":"c265e335-73f2-4544-a7ae-510b445b7be8","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"00cf1b2a-d853-4e0f-af81-b45c7b7e32b2","keyword":"纵梁","originalKeyword":"纵梁"},{"id":"03365412-efd5-4ccd-9259-278c0956b3b0","keyword":"非金属夹杂物","originalKeyword":"非金属夹杂物"},{"id":"da656628-b850-451c-9be8-c85b782bbe89","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"a03fca37-e6f9-462c-96be-7191a2ce5199","keyword":"失效分析","originalKeyword":"失效分析"}],"language":"zh","publisherId":"jxgccl200307017","title":"客车纵梁开裂原因分析","volume":"27","year":"2003"},{"abstractinfo":"由于层压板梁的各向异性,载荷下结构响应和刚度特性难以确定.为了解决有限元方法在进行复合层压板梁的结构分析时参数确定的难题,提出了一种层压板工字梁的应力分析方法,并在MATLAB上编程实现,通过与理论计算值和有限元软件ANSYS分析结果进行对比,证明该方法可行,且适合于进行参数化研究设计.","authors":[{"authorName":"王亚妮","id":"54d20ff8-3fb1-4f46-85ed-050a7d42e448","originalAuthorName":"王亚妮"},{"authorName":"袁昌盛","id":"2e8553d2-8d08-4a02-8768-54c3afb6ed12","originalAuthorName":"袁昌盛"},{"authorName":"孔德拴","id":"50f94a8b-eba3-44a8-80fc-381107b50526","originalAuthorName":"孔德拴"}],"doi":"10.3969/j.issn.1004-244X.2012.04.024","fpage":"79","id":"ece10a64-3962-486a-beac-81faa094a594","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"bf7af5b5-52a3-4a6a-bd86-75be8c815d35","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"469d7da3-c661-4366-a1ea-4b0e133e72ac","keyword":"工字梁","originalKeyword":"工字梁"},{"id":"d46fd672-c2b4-4d37-9b07-e208050f2c1d","keyword":"截面特性","originalKeyword":"截面特性"},{"id":"b98fc1bc-fbf5-4c05-8163-80bc9d8606d4","keyword":"结构分析","originalKeyword":"结构分析"}],"language":"zh","publisherId":"bqclkxygc201204024","title":"复合材料工字梁结构分析","volume":"35","year":"2012"},{"abstractinfo":"某公司生产的货车在运行过程中发现枕梁下盖板开裂.对其进行化学成分分析、力学性能和金相检验以及对断口形貌扫描电镜进行观察.结果表明,枕梁下盖板的化学成分和力学性能符合要求,基体金相组织为铁素体+珠光体,枕梁下盖板受较大交变应力的作用,裂纹沿枕梁下盖板材料的轧制方向开裂,为疲劳断裂.","authors":[{"authorName":"王立辉","id":"ed7f253d-6646-4820-9380-d06f9986a483","originalAuthorName":"王立辉"},{"authorName":"但启安","id":"494c5d13-3093-4545-9b0a-0d8cf55926fd","originalAuthorName":"但启安"},{"authorName":"徐巍","id":"823cc435-dce4-4283-b7f1-5381534c7dc7","originalAuthorName":"徐巍"},{"authorName":"李庆晓","id":"17f6d0ff-f3c4-4625-b99b-65cac42da6e2","originalAuthorName":"李庆晓"}],"doi":"10.13228/j.boyuan.issn1001-0777.20160094","fpage":"49","id":"67abf39a-da87-411c-9a60-c06db4f7d714","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"360ac94b-6f78-460b-9ef0-129e906888e6","keyword":"盖板","originalKeyword":"盖板"},{"id":"3966765b-4012-45ae-a43c-aded0788bbd8","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"12a659d8-de1b-484c-9beb-5504a9dc3661","keyword":"疲劳","originalKeyword":"疲劳"}],"language":"zh","publisherId":"wlcs201703011","title":"货车枕梁下盖板开裂分析","volume":"35","year":"2017"},{"abstractinfo":"本文提出了梁受到弯曲、剪切载荷时其挠度、应力应变以及局部和整体屈曲载荷、失效载荷的简单的设计公式.并用试验对其精确度和正确性进行了验证.","authors":[{"authorName":"丁尚宗","id":"a7cf296e-98dd-4538-8bc9-a3c7c69eeecd","originalAuthorName":"丁尚宗"}],"doi":"10.3969/j.issn.1003-0999.2002.02.003","fpage":"7","id":"e502faf5-8d0e-452a-8558-78b6f2696f17","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"40cb3659-1b4b-4c82-8463-b9b418de78de","keyword":"FRP拉挤型材","originalKeyword":"FRP拉挤型材"},{"id":"b6d14ab2-c9c7-42f5-b1e3-aad7a654057d","keyword":"梁结构","originalKeyword":"梁结构"},{"id":"9faa2df8-f4c7-4105-b8fa-e24febf5367d","keyword":"工程设计","originalKeyword":"工程设计"}],"language":"zh","publisherId":"blgfhcl200202003","title":"FRP梁结构的工程设计","volume":"","year":"2002"},{"abstractinfo":"对于混杂CFRP/GFRP筋高性能混凝土(HPC)梁,研究一种新的三维非线性梁壳组合单元,对HPC梁进行了全过程分析.引入实体退化壳单元理论,利用空间梁单元模拟预应力CFRP筋,并根据CFRP筋单元节点线位移和转角位移的协调性,推导CFRP筋单元对梁壳组合单元刚度矩阵的贡献,同时对GFRP筋和HPC梁采用分层壳单元模拟.并运用Jiang屈服准则、Madrid强化准则等描述混凝土的材料非线性,提出一种新的非线性梁壳组合单元,研制相应的三维非线性计算程序.计算结果与试验数据吻合良好,说明本文构造的非线性梁壳组合单元的正确性和研制程序的可靠性,以及混凝土材料非线性描述的合理性;采用组合单元能准确模拟CFRP筋的几何构形,能综合考虑其拉压弯剪性能,利于全面地反映配筋对结构的增强作用.","authors":[{"authorName":"张剑","id":"71e4167f-048b-42ea-a88b-e3f4c65ff808","originalAuthorName":"张剑"},{"authorName":"周储伟","id":"7e061473-e6c6-4f48-82e8-2feb082e934f","originalAuthorName":"周储伟"},{"authorName":"雷笑","id":"7e4c2f1d-a100-45ea-8c5b-3bf756eb1a51","originalAuthorName":"雷笑"},{"authorName":"叶见曙","id":"6b621cbf-bbdb-4f80-81e8-672fab01bdf2","originalAuthorName":"叶见曙"},{"authorName":"卓家寿","id":"563d0c34-20ee-428a-822e-c6ec650c5b0d","originalAuthorName":"卓家寿"}],"doi":"","fpage":"139","id":"d27ee44d-602b-42ca-953e-9978eaf8c9b6","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"fdd1329d-f2ec-4f17-971e-6d80f9ea5324","keyword":"CFRP筋","originalKeyword":"CFRP筋"},{"id":"8263ce8e-9adb-4dbd-9cc9-19ee2c627347","keyword":"GFRP筋","originalKeyword":"GFRP筋"},{"id":"fc0ed6b4-d5c4-43e8-ad1f-59bd9841a0a2","keyword":"梁壳组合单元","originalKeyword":"梁壳组合单元"},{"id":"c78d48e4-690b-48c9-91da-92c128a11b6c","keyword":"HPC梁","originalKeyword":"HPC梁"},{"id":"5b0fc356-5d13-4ad7-8839-74057619bcb0","keyword":"材料非线性","originalKeyword":"材料非线性"}],"language":"zh","publisherId":"fhclxb201004023","title":"混杂CFRP/GFRP筋HPC梁的非线性梁壳组合单元研究","volume":"27","year":"2010"},{"abstractinfo":"随着功能梯度梁的跨高比从小(厚梁)变到大(薄梁),梁的变形受到剪切变形的影响就会从大变到小.为了准确分析功能梯度梁的变形,跨高比小的厚梁采用Timoshenko梁模型,而跨高比大的薄梁采用Euler-Bernoulli梁模型.采用这两种梁模型进行功能梯度梁自由振动的有限元计算,分析单元刚度矩阵、质量矩阵和模态阵型等存在的差异.通过数值算例,研究了这两种梁模型的差异对模态应变能法的损伤识别指标的影响.对于厚梁,Timoshenko梁模型的损伤指标优于Euler-Bernoulli梁模型;对于很薄的梁(例如,l/h=25时的薄梁),Euler-Bernoulli梁模型的损伤指标优于Timoshenko梁模型.","authors":[{"authorName":"岳世燕","id":"850ed8f3-8107-46dc-ab00-a5c3e752a86e","originalAuthorName":"岳世燕"},{"authorName":"杨真真","id":"13d89100-01dd-467e-a230-6a8f7d965719","originalAuthorName":"杨真真"},{"authorName":"谢峰","id":"d8b17c64-6721-4fec-8733-906b818c886a","originalAuthorName":"谢峰"},{"authorName":"黄立新","id":"aeeb5c1b-c307-4acf-a991-a74aa315cde7","originalAuthorName":"黄立新"}],"doi":"","fpage":"38","id":"953b5b8a-7d88-4bc5-beb3-4693e5c5d61a","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"9008276c-f829-4584-a97a-3c43c3979524","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"214c7c07-deb2-4fb0-a62a-b383e440b012","keyword":"Euler-Bernoulli梁模型","originalKeyword":"Euler-Bernoulli梁模型"},{"id":"403471ea-15ed-492b-b95b-9d4ce10cc99e","keyword":"Timoshenko梁模型","originalKeyword":"Timoshenko梁模型"},{"id":"d5f53043-fd16-4b3e-882a-4346aec1ef15","keyword":"模态应变能","originalKeyword":"模态应变能"},{"id":"485091e3-75fa-4196-9b35-2a86c932c06a","keyword":"损伤识别","originalKeyword":"损伤识别"}],"language":"zh","publisherId":"blgfhcl201702007","title":"基于模态应变能法功能梯度Euler-Bernoulli梁和Timoshenko梁模型对损伤识别的影响分析","volume":"","year":"2017"}],"totalpage":76,"totalrecord":751}