本研究在室温下控制位移,先以5mm/min的位移速度对泡沫镍进行了单轴拉伸、压缩实验,然后在不同应变率情况下进行了一系列单轴拉伸实验,得到了相应的应力-应变曲线,讨论了材料的应变率相关性.结果表明在普通拉伸试验范围内(准静态),改变变形速度会影响应力-应变曲线,屈服应力、强度极限随变形速度增大而下降;单轴拉伸时,应力应变关系明显分为线弹性变形、塑性变形、线性硬化和破坏4个阶段;单轴压缩时,具备其他泡沫材料受压典型应力-应变曲线的3阶段特征,即明显的弹性变形段、屈服平台段和紧实段.
参考文献
[1] | Carolin Komer;Robert F Singer .[J].Advances in Engineering Materials,2000,2(04):159. |
[2] | Banhart J .[J].PROGRESS IN MATERIALS SCIENCE,2000,47:2001. |
[3] | GibsonLJ;Ashby M F.Cellular Solids. 2nd Edition[M].Cambridge :Cambridge University Press,1997 |
[4] | Ashby M F;Evans A G.Metal Foams-A Design Guide 1nd Edition[M].Boston: Butterworth-Heinemann,2000 |
[5] | 刘振忠 .[J].电镀与涂饰,1989,17(02):10. |
[6] | 刘培生,黄林国.多孔金属材料制备方法[J].功能材料,2002(01):5-8,11. |
[7] | Badiche X;Forest S;Guibert T et al.[J].Material Science and Engineering,2000,A289:276. |
[8] | Zhang J Y;Zhang P;Gan Q L et al.[Z].Submited to Scripta Materialia |
[9] | Papka S D et al.[J].Journal of the Mechanics and Physics of Solids,1994,42(10):1499. |
[10] | Yamada Y et al.[J].Advances in Engineering Materials,2000,2(04):184. |
[11] | Chung Jaeung et al.[J].AIAA Journal,2002,40(05):966. |
[12] | 张俊彦;张平;肖映雄.[J].工程力学,2003 |
[13] | Grenestedt J L .[J].Journal of the Mechanics and Physics of Solids,1999,46(01):29. |
[14] | Fortes M A;Ashby M F .[J].Acta Materialia,1999,47(12):3469. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%