欢迎登录材料期刊网

材料期刊网

高级检索

采用溶胶-凝胶法和超临界干燥技术制备了(1-n)SiO2nAl2O3n=0、001、0.1)混合气凝胶体系,并以此作为载体,成功地将纳米ZrO2粒子组装到(1—n)SiO2nAl2O3介孔体系中,而形成纳米ZrO2/(1—n)SiO2nAl2O3介孔复合材料.光致发光光谱研究表明,室温下以316um(392eV)波长激发时,纳米ZrO2粒子540um(230eV)荧光峰,在介孔复合体中将蓝移至400um(310eV)左右,蓝移量140um;其光致荧光峰的相对强度亦随Al2O3的掺入量不同而不同.对产生上述光谱性质变化的机理进行了初步探讨.

(1-n)SiO2-nAl2O3 (n=0, 0.01, 0.1) aerogels were prepared by using a sol-gel route and followed by the supercritical drying technique. Nano-ZrO2 precipitates
were introduced into the pores of the aerogels. Photoluminescence of the ZrO2/(1-n)SiO2-nAl2O3 nanocomposites was measured. The results show that the luminescence
peak at about 540nm (2.30eV) for nano-ZrO2 bulk sample shifts to 400nm (3.10eV) (blue shift) for ZrO2/(1-n)SiO2-nAl2O3 nanocomposites, when the excitation
wavelength is 316nm (3.92eV) at room temperature. The blue shift is about 140nm. The relative intensities of the luminescence peak change with the doping amount of the
nano-Al2O3. Mechanism of change of the luminescence peak in the visible region was proposed.

参考文献

[1]
[2] Dvorak M D, Justus B L, et al. Appl. Phys. Lett., 1995, 66 (7): 804--806
2 Hendershot D G, Gaskill D K, et al. Appl. Phys. Lett., 1993, 63 (24): 3324--3326
3 Coffer J L, Beauchamp G, Zerda T W. J. Non-Cryst. Solids, 1992, 142 (3): 208--214
4 Stamper A K, Greve D W, Schlesinger T E. J. Appl. Phys., 1991, 70 (4): 2046--2051
5 Bonola C, Camagni P, Omenetto N, et al. J. Luminescence, 1991, 48\&
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%