欢迎登录材料期刊网

材料期刊网

高级检索

采用真空热压?内氧化烧结方法制备20%Mo/Cu-Al2O3复合材料,测试其性能并观察分析其微观组织.利用 Gleeble?1500D 热力模拟试验机在温度为350~750℃、应变速率为0.01~5 s?1及总应变量0.5的条件下,对20%Mo/Cu-Al2O3复合材料热变形过程中的流变应力与应变之间的关系进行研究.结果表明:20%Mo/Cu-Al2O3复合材料的组织分布均匀,未观察到明显的团聚现象及孔洞,致密度较高.在材料基体上,原位内氧化生成的纳米级Al2O3颗粒呈弥散分布,增加了基体的强度.复合材料的高温流动应力—应变曲线以动态再结晶软化机制为主,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力—真应变曲线基础上建立的高温变形本构方程较好地表征了此复合材料的高温流变特性,其计算结果与实验结果吻合较好.

@@@@The 20%Mo/Cu-Al2O3 composites were prepared by vacuum-pressed in situ internal oxidation sintering, their properties and microstructures were tested and observed, respectively. Using the Gleeble?1500D thermal simulator, the relationship between the flow stress and strain during the hot deformation process of the 20%Mo/Cu-Al2O3 composites was investigated at temperature of 350?750 ℃, strain rate of 0.01?5 s?1 and total strain of 0.5. The results show that the microstructures of the 20%Mo/Cu-Al2O3 composites well distribute, no aggregate phenomena and holes are observed, and the density is relatively high. The in situ internal oxidation generated nano Al2O3 particles distribute dispersively, which enhances the body strength of the composites. The softening mechanism of dynamic recrystallization of the composites is a feature for the high-temperature flow stress—strain curves of the composite, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate. Based on the true stress—true strain curves, the established constitutive equation represents the high-temperature flow behavior of the composite, and the calculated results of the flow stress are in good agreement with the experimental results of the high-temperature deformation.

参考文献

[1] 程继贵,弓艳飞,宋鹏,李洁.凝胶-共还原法制备超细Mo-Cu粉末及其烧结性能[J].中国有色金属学报,2007(03):422-427.
[2] 张青花.Mo-Cu复合材料的最新研究进展[J].河西学院学报,2009(02):51-55.
[3] 刘海彦,李增峰,汤慧萍,高广瑞,黄原平.机械合金化制备钼铜复合材料[J].功能材料,2004(z1):3294-3296.
[4] 周武平,吕大铭.钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005(01):21-25.
[5] Young Do Kim;Nang Lyeom Oh;Sung-Tag Oh .Thermal conductivity of W-Cu composites at various temperatures[J].Materials Letters,2001(5):420-424.
[6] 杨明川,宋贞桢,卢柯.W-20%Cu纳米复合粉的制备[J].金属学报,2004(06):639-642.
[7] 田保红,周洪雷,张毅,刘勇.Al2O3弥散强化铜/铬复合材料的强化机理[J].材料热处理学报,2011(z1):13-17.
[8] 刘勇,赵瑞龙,田保红,张晓伟,张毅.W-50%Cu复合材料的高温变形行为及加工图[J].材料热处理学报,2011(09):1-5.
[9] 石德珂.材料科学基础[M].北京:机械工业出版社,1999:358-365.
[10] 雷静果,刘平,赵冬梅,井晓天,郅晓.Cu-Ni-Si合金时效早期动力学研究[J].功能材料,2005(03):368-370.
[11] DAVENPOT S B;SILK N J;SPARKS C N .Development of constitutive equations for modeling of hot rolling[J].Material Science Technology,2000,16(05):539-546.
[12] JONAS J J;SELLARS C M .Strength and structure under hot working conditions[J].Int Metallurgical Reviews,1969,14:1-24.
[13] 王忠堂,张士宏,齐广霞,王芳,李艳娟.AZ31镁合金热变形本构方程[J].中国有色金属学报,2008(11):1977-1982.
[14] ZENER C;HOLLOMON J H .Effect of strain rate upon the plastic flow of steel[J].Journal of Applied Phycology,1994,15(01):22-32.
[15] SELLARS C M .Modelling microstructural development during hot rolling[J].Material Science Technology,1990,16(11):1072-1078.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%