以H3PO4、FeSO4·7H2O和LiOH·H2O为原料,石墨烯为碳源,采用水热合成法制备锂离子电池正极材料LiFePO4,考察水热反应温度和后期的焙烧温度等工艺条件对合成产物结构、形貌及电化学性能的影响。结果表明,水热反应温度和焙烧温度对合成的LiFePO4形貌结构与电化学性能均有显著的影响,石墨烯的掺入可明显改善材料的电化学性能。当水热温度为150℃、焙烧温度为700℃、石墨烯的掺入量为3%(质量分数)时,制备的样品具有相对较好的电化学性能,0.1C倍率下首次放电比容量为134.0 mA·h/g,经过20次循环后的比容量为131.3 mA·h/g,容量衰减率仅为2.02%。
LiFePO4 cathode material was synthesized using H3PO4, FeSO4·7H2O and LiOH·H2O as raw materials and graphene as carbon source. The effects of hydrothermal temperature and calcination temperature on the structure, micro-morphology and electrochemical performance of the as-synthesized specimens were investigated. The results show that both of hydrothermal temperature and calcination temperature are crucial parameters for the microstructure and electrochemical property of hydrothermal LiFePO4, the incorporation of graphene can significantly improve the electrochemical properties of the material. At the hydrothermal temperature of 150 ℃, the calcination temperature of 700 ℃ and the addition of graphene of about 3% (mass fraction), the as-obtained sample shows good electrochemical performance with initial specific discharge capacity of 134.0 mA·h/g at 0.1C, after 20 cycles, the specific capacity is 131.3 mA·h/g, and the decay rate is only about 2.02%.
参考文献
[1] | LI C;ZHANG H P;FU L J;LIU H WU Y P RAHM E HOLZE R WU H Q .Cathode materials modified by surface coating for lithium ion batteries[J].Electrochimica Acta,2006,51(12):3872-2883. |
[2] | Padhi AK.;Goodenough JB.;Nanjundaswamy KS. .PHOSPHO-OLIVINES AS POSITIVE-ELECTRODE MATERIALS FOR RECHARGEABLE LITHIUM BATTERIES[J].Journal of the Electrochemical Society,1997(4):1188-1194. |
[3] | Prosini PP.;Lisi M.;Zane D.;Pasquali M. .Determination of the chemical diffusion coefficient of lithium in LiFePO4[J].Solid state ionics,2002(1/2):45-51. |
[4] | 钟美娥,周志晖,周震涛.固相-碳热还原法制备高密度LiFePO4/C复合材料及其电化学性能[J].物理化学学报,2009(08):1504-1510. |
[5] | IKER B;JALBERTO B;IRATXE M;MIGUEL B OSCAR M HANS G HUANG Y H JOHN B G .Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition[J].Journal of Power Sources,2010,195(03):5351-5359. |
[6] | 尹雄鸽,黄可龙,刘素琴,徐洋.溶胶-凝胶法制备LiFePO4/C复合材料及其性能[J].中国有色金属学报,2010(09):1748-1752. |
[7] | Rong Yang;Xiaoping Song;Mingshu Zhao .Characteristics of Li_(0.98)Cu_(0.01)FePO_4 prepared from improved co-precipitation[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):365-369. |
[8] | 伍凌,王志兴,李新海,李灵均,郑俊超,郭华军,彭文杰.钛掺杂LiFePO4的还原插锂合成及其性能[J].中国有色金属学报,2008(z1):290-295. |
[9] | Murugan AV;Muraliganth T;Manthiram A .Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries[J].Electrochemistry communications,2008(6):903-906. |
[10] | Daiwon Choi;Prashant N. Kumta .Surfactant based sol-gel approach to nanostructured LiFePO_4 for high rate Li-ion batteries[J].Journal of Power Sources,2007(2):1064-1069. |
[11] | Jun-chao Zheng;Xin-hai Li;Zhi-xing Wang;Hua-jun Guo;Shao-yun Zhou .Lifepo_4 With Enhanced Performance Synthesized By A Novel Synthetic Route[J].Journal of Power Sources,2008(2):574-577. |
[12] | Shoufeng Yang;Peter Y. Zavalij;M. Stanley Whittingham .Hydrothermal synthesis of lithium iron phosphate cathodes[J].Electrochemistry communications,2001(9):505-508. |
[13] | QIAN J F;ZHOU M;CAO Y L;AI X P YANG H X .Template-free hydrothermal synthesis of nanoembossed mesoprous LiFePO4 microspheres for high-performance lithium-ion batteries[J].J Phys Chem C,2010,114(03):3477-3482. |
[14] | Kanamura K;Koizumi SH;Dokko KR .Hydrothermal synthesis of LiFePO4 as a cathode material for lithium batteries[J].Journal of Materials Science,2008(7):2138-2142. |
[15] | A.S.Andersson;J.O.Thomas .The source of first-cycle capacity loss in LiFePO_4[J].Journal of Power Sources,2001(0):498-502. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%