欢迎登录材料期刊网

材料期刊网

高级检索

阐述了低场核磁共振技术在水泥基材料研究中的应用现状,认为现有的研究主要集中于水泥水化进程和水在硬化浆体中的扩散特征,也包括对硬化水泥浆体孔结构和比表面积的测试.分析了低场核磁共振技术在实际应用中面临的挑战,展望了该技术在新拌水泥浆体结构性能研究中的应用前景.

参考文献

[1] 张一鸣,骆逸峰.低场脉冲核磁共振分析测量仪及其应用[J].现代科学仪器,2003(02):52-54.
[2] 姚武,佘安明,杨培强.水泥浆体中可蒸发水的1H核磁共振弛豫特征及状态演变[J].硅酸盐学报,2009(10):1602-1606.
[3] McDonald PJ;Korb JP;Mitchell J;Monteilhet L .Surface relaxation and chemical exchange in hydrating cement pastes: A two-dimensional NMR relaxation study[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2005(1):1409-1-1409-9-0.
[4] Jehng J Y .Microstructure of wet cement pastes a nuclear magnetic resonance study[D].Evanston:Northwestern Uruversity,1995.
[5] Gorce J P;Milstone N B .Probing the microstructure and water in composite cement blends[J].Cement and Concrete Research,2007,37:310.
[6] Hazrati K;Pel L;Marchand J et al.Determination of isothermal unsaturated capillary flow in high performance cement mortars by NMR imaging[J].Materials and Structures,2002,35(12):614.
[7] Cano-Barrita P F de J;Marble A E;Balcom B J .EmbeddedNMR sensors to monitor evaporable water loss caused by hydration and drying in Portland cement mortar[J].Cement and Concrete Research,2009,39:324.
[8] Gummerson R J;Hall C;Hoff W D .Unsaturated water flow within porous materials observed by NMR imaging[J].Nature,1979,281(09):56.
[9] Apih T;Lahajnar G;Sepe A et al.Proton spirrlattice relaxation study of the hydration of self-stressed expansive cement[J].Cement and Concrete Research,2001,31:263.
[10] SHE Anming,YAO Wu,WEI Yongqi.In-situ Monitoring of Hydration Kinetics of Cement Pastes by Low-field NMR[J].武汉理工大学学报(材料科学版)(英文版),2010(04):692-695.
[11] 佘安明,姚武.质子核磁共振技术研究水泥早期水化过程[J].建筑材料学报,2010(03):376-379.
[12] Tritt-Goc J;Pislewski N .The hardening of Portland cement observed by lH spin-lattice relaxation and singlrpoint imaging[J].Applied Magnetic Resonance,1999,18(01):155.
[13] Pipilikaki P;Katsioti Lvl .Study of thehydration process of quaternary blended cements and durability of the produced mortars and concretes[J].Construction and Building Materials,2009,23:2246.
[14] Nestle N.;Zimmermann C.;Dakkouri M.;Karger J. .Transient high concentrations of chain anions in hydrating cement - indications from proton spin relaxation measurements[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2002(2):166-171.
[15] Nikolaus Nestle;Marwan Dakkouri;Oliver Geier .Blastfurnace slag cements: A construction material with very unusual nuclear spin relaxation behavior during hardening[J].Journal of Applied Physics,2000(7):4269-4273.
[16] Nestle N;Galvosas P;Geier O.NMR studies of water diffusion and relaxation in hydrating slag-based construction materials[J].Magn Reso Imaging,2001(19):547.
[17] Alesiani, M;Pirazzoli, I;Maraviglia, B;Canonico, F .NMR and XRD Study on Calcium Sulfoaluminate Cement[J].Applied Magnetic Resonance,2008(1):33-41.
[18] Persson B .Moisture in concrete subjected to different kinds of curing[J].Materials and Structures,1997,30(11):533.
[19] Stingaciu L R;Pohlmeier A;Blumler P .Characterization of unsaturated porous media by high-field and low-field NMR relaxometr)[J].Water Resources Research,2009,45(08):W08412.
[20] Blumich, B;Perlo, J;Casanova, F .Mobile single-sided NMR[J].Progress in Nuclear Magnetic Resonance Spectroscopy: An International Review Journal,2008(4):197-269.
[21] Cotts R M;Hoch M J R;Sun T et al.Pulsed field gradientst imulated echo methods for improved NMR diffusion measurements in heterogeneous systems[J].Journal of Magnetic Resonance,1989,83:252.
[22] Monteilhet L;Korb J P;Mitchell J et al.Observation of exchange of micropore water in cement pastes by two-dimensional T《,2》-T《,2》 nuclearmagnetic resonance relaxometry[J].Physical Review E,2006,74:061404.
[23] Vaiori A;Rodin V et al.On the interpretation of IH 2-dimensional NMR relaxation exchange spectra in cements:Is there exchange between pores with two characteristic sizes or Fe《'3+》 concentrations[J].Cement and Concrete Research,2010,40:1375.
[24] Pel L;Kopinga K;Brocken H .Determination of moisture profiles in porous building materials by NMR[J].Magnetic Resonance Imaging,1996,14:931.
[25] Pel L;Hazrati K .Kopinga K Water absorption in mortar determined by NMR[J].Magnetic Resonance Imaging,1998,16:525.
[26] Brownstein K R .Tarr C E Importance of classical diffusion in NMR studies of water in biological cells[J].Physical Review A,1979,19(06):2446.
[27] Tziotziou M;Karakosta E;Karatasios I et al.Application of l H NMR to hydration and porosity studies of lime-pozzolan mixtures[J].Microporous and Mesoporous Materials,2010,139(1-3):16.
[28] Jehng J Y;Sprague D T;Halperin W P .Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing[J].Magnetic Resonance Imaging,1996,14:785.
[29] Sharma S;Casanova F;Wache W .Analysis of lustorical porous building materials by the NMR-MOUS[J].Magnetic Resonance Imaging,2003,21:249.
[30] Thomas J.J;Jennings H M;Allen A J.The surface area of hardened cement paste as measured by various techniques[J].Concrete Science and Engineering,1999(03):45.
[31] Halperin W P;Jehng J Y;Song Y Q .Application of spinspin relaxation to measurement of surface area and pore size distributions in a hydrating cement paste[J].Magnetic Resonance Imaging,1994,12(02):169.
[32] Bogdan M;Balcom B J;Bremner T W et al.Singlffpoint imaging of partially dried,hydrated white Portland cement[J].Journal of Magnetic Resonance Series A,1995,166:266.
[33] Balcom B J;Macgregor R P;Beyea S D et al.Singlrpoint ramped imaging with Ti enhancement(SPRITE)[J].Journal of Magnetic Resonance Series A,1996,123:131.
[34] Friedemann K;Stallmach F;Karger J .NMR diffusion and relaxation studies during cement hydration-A non-destructive approach for clarification of the mecharusm of internal post curing of cementitious materials[J].Cement and Concrete Research,2006,36:817.
[35] Friedemann K;Schonfelder W;Stallmach F .NMR relaxometry during internal curing of Portland cements by lightweight aggregates[J].Materials and Structures,2008,41:1647.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%