利用静态高压釜,在330℃的10%NaOH+10 g/L PbO腐蚀介质中,对690TT合金进行5~60 d的浸泡实验,结果表明:690TT合金氧化膜由NiO、NiFe<,2>O<,4>和NiCr<,2>O<,4>构成.合金的氧化膜分层,靠近基体的腐蚀产物为混杂的富Cr和富Ni氧化物,是沿晶腐蚀和表面均匀腐蚀综合作用所致.中间层主要以NiCr<,2>O<,4>为主,外层是NiFe<,2>O<,4>以及NiO<,0>氧化膜同时具有n型和P型半导体特征,内层富Cr的氧化物为p型半导体,而外层富Fe的氧化物为n型半导体.
参考文献
[1] | Was G S .Grain-boundary chemistry and intergranular fracture in anstenitic nickel-base alloys-a review[J].Corrosion,1990,46(04):319-330. |
[2] | 华惠中,黄春波,吕战鹏,杨武.800、600和690合金的铅致应力腐蚀破裂[J].腐蚀与防护,2001(11):483-488. |
[3] | Miglin B P;Sarver J M.Preliminary studies of lead stress corrosion cracking of alloy 690[A].Jekyll Island,GA,1989:7-18. |
[4] | R.W. Staehle;J.A. Gorman .Quantitative Assessment of Submodes of Stress Corrosion Cracking on the Secondary Side of Steam Generator Tubing in Pressurized Water Reactors: Part 1[J].Corrosion: The Journal of Science and Engineering,2003(11):931-994. |
[5] | R. W. Staehle;J. A. Gorman .Quantitative Assessment of Submodes of Stress Corrosion Cracking on the Secondary Side of Steam Generator Tubing in Pressurized Water Reactors: Part 2[J].Corrosion: The Journal of Science and Engineering,2004(1):5-63. |
[6] | R. W. Staehle;J. A. Gorman .Quantitative Assessment of Submodes of Stress Corrosion Cracking on the Secondary Side of Steam Generator Tubing in Pressurized Water Reactors: Part 3[J].Corrosion: The Journal of Science and Engineering,2004(2):115-180. |
[7] | Stephen E. Ziemniak;Michael Hanson .Corrosion behavior of NiCrFe Alloy 600 in high temperature, hydrogenated water[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2006(2):498-521. |
[8] | M. Da Cunha Belo;N. E. Hakiki;M. G. S. Ferreira .Semiconducting properties of passive films formed on nickel-base alloys type alloy 600: influence of the alloying elements[J].Electrochimica Acta,1999(14):2473-2481. |
[9] | Panter J;Viguier B;Cloue JM;Foucault M;Combrade P;Andrieu E .Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2006(1/2):213-221. |
[10] | M. F. Montemor;M. G. S. Ferreira;M. Walls .Influence of pH on Properties of Oxide Films Formed on Type 316L Stainless Steel, Alloy 600, and Alloy 690 in High-Temperature Aqueous Environments[J].Corrosion: The Journal of Science and Engineering,2003(1):11-21. |
[11] | Lemire RJ.;McRae GA. .The corrosion of Alloy 690 in high-temperature aqueous media - thermodynamic considerations[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2001(1/2):141-147. |
[12] | Miglin B P;Sarver J M;Psaila-Dombrowksi M J.Lead assisted stress corrosion cracking of nuclear steam generator tube materials[A].Airlie:NACE,1995:305-320. |
[13] | Robertson J .The mechanism of high temperature aqueous corrosion of stainless steels[J].Corrosion Science,1991,32(04):443-465. |
[14] | Chen C M;Aral K;Theus G J.Computer Calculated Potential pH Diagrams to 300 ℃[M].Palo Alto,CA,1983:1-3. |
[15] | Chuha Bale M Da;Rondot B;Compere C et al.Chemical composition and semiconduction behaviour of stainless steel passive films in contact with artificial seawater[J].Corrosion Science,1998,40(2 -3):481-494. |
[16] | Chuha Belo M Da;Walls M;Hakiki N E et al.Composition,structrue and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment[J].Corrosion Science,1998,40(2-3):447-463. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%