欢迎登录材料期刊网

材料期刊网

高级检索

选用氧化特性不同的6株中等嗜热菌,构建4组共培养菌群,用于一水硬铝石型高硫铝土矿的摇瓶脱硫实验.对筛选出的高效菌群,分析其在高硫铝土矿脱硫过程中的脱硫行为,并采用SEM、XPS、XANES等技术手段分析含硫矿物氧化过程中的表面形貌和中间产物.结果表明:铁、硫氧化混合菌群比亚铁氧化菌群和硫氧化菌群具有更强的氧化能力,脱硫15d后矿石中硫含量下降到0.29%,满足拜耳法生产氧化铝的原料要求.在氧化过程中,含硫矿物表面出现单质硫和黄钾铁矾,但这些中间产物并未成为脱硫的阻止因素.最终氧化产物是硫酸盐.

参考文献

[1] 彭欣;金立业.高硫铝土矿生产氧化铝的开发与应用[J].轻金属,2010(11):14-17.
[2] 胡小莲;陈文汨;谢巧玲.高硫铝土矿中硫的赋存状态及除硫[J].中国有色金属学报(英文版),2011(7):1641-1647.
[3] 李小斌;李重洋;齐天贵;周秋生;刘桂华;彭志宏.拜耳法高温溶出条件下黄铁矿的反应行为[J].中国有色金属学报,2013(3):829-835.
[4] 李小斌;李重洋;彭志宏;刘桂华;周秋生;齐天贵.铝酸钠溶液中硫和铁组元间的相互作用[J].中国有色金属学报(英文版),2015(2):608-614.
[5] 王晓民;张廷安;吕国志;鲍丽;吕滨;蒋孝丽.高硫铝土矿浮选除硫的工艺[J].稀有金属,2009(5):728-732.
[6] 吕国志;张廷安;鲍丽;豆志河;赵爱春;曲海翠;倪培远.高硫铝土矿的焙烧预处理及焙烧矿的溶出性能[J].中国有色金属学报,2009(9):1684-1689.
[7] 王鹏;魏德洲.高硫铝土矿脱硫技术[J].金属矿山,2012(1):108-110,123.
[8] 王朋 .铝土矿矿山微生物区系分析及浸矿微生物的筛选[D].湖南农业大学,2006.
[9] 周吉奎;李花霞.高硫铝土矿中黄铁矿的细菌氧化试验研究[J].金属矿山,2011(12):67-69,90.
[10] Douglas E.Rawlings and D.Barrie Johnson.The microbiology of biomining:development and optimization of mineral-oxidizing microbial consortia[J].Microbiology,20072(2):315-324.
[11] 余润兰;石丽娟;周丹;邱冠周;曾伟民.生物浸出过程中微生物协同作用机制的研究进展[J].中国有色金属学报,2013(10):3006-3015.
[12] Holmes PR.;Crundwell FK..The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,20002(2):263-274.
[13] A. P. Chandra;A. R. Gerson.The mechanisms of pyrite oxidation and leaching: A fundamental perspective[J].Surface Science Reports,20109(9):293-315.
[14] Liu, R;Wolfe, AL;Dzombak, DA;Horwitz, CP;Stewart, BW;Capo, RC.Controlled electrochemical dissolution of hydrothermal and sedimentary pyrite[J].Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry,20095(5):836-842.
[15] K. Harneit;A. Goksel;D. Kock.Adhesion to metal suifide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans[J].Hydrometallurgy,20061/4(1/4):245-254.
[16] Cindy-Jade Africa;Robert P. van Hille;Wolfgang Sand.Investigation and in situ visualisation of interfacial interactions of thermophilic microorganisms with metal-sulphides in a simulated heap environment[J].Minerals Engineering,2013:100-107.
[17] H.R. Watling;F.A. Perrot;D.W. Shiers.Comparison of selected characteristics of Sulfobaallus species and review of their occurrence in acidic and bioleaching environments[J].Hydrometallurgy,20081/2(1/2):57-65.
[18] J.J. Plumb;R. Muddle;P.D. Franzmann.Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms[J].Minerals Engineering,20081(1):76-82.
[19] Zhao, Hongbo;Wang, Jun;Yang, Congren;Hu, Minghao;Gan, Xiaowen;Tao, Lang;Qin, Wenqing;Qiu, Guanzhou.Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: An emphasis on solution compositions[J].Hydrometallurgy,2015:141-150.
[20] Huan He;Fen-Fen Hong;Xiu-Xiang Tao.Biodesulfurization of coal with Acidithiobacillus caldus and analysis of the interfacial interaction between cells and pyrite[J].Fuel Processing Technology,2012:73-77.
[21] Yifan Han;Xiaomei Ma;Wei Zhao.Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process[J].Journal of Bioscience and Bioengineering,20134(4):465-471.
[22] 高健;康健;吴学玲;徐競;李邦梅;邱冠周.Fe2+对嗜铁钩端螺旋菌L. ferriphilum生长活性的影响[J].中国有色金属学报,2008(1):159-162.
[23] 顾帼华;孙小俊;胡可婷;李建华;邱冠周.氧化亚铁硫杆菌浸矿体系中黄铁矿的电化学行为[J].中国有色金属学报,2012(5):1250-1254.
[24] Blight K.;Ralph D.E..Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation[J].Hydrometallurgy,20003(3):227-237.
[25] A. Schippers;T. Rohwerder;W. Sand.Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal[J].Applied Microbiology and Biotechnology,19991(1):104-110.
[26] Yin, H.;Zeng, W.;Liang, Y.;Liu, Y.;Baba, N.;Qiu, G.;Shen, L.;Fu, X.;Liu, X..The effect of the introduction of exogenous strain Acidithiobacillus thiooxidans A01 on functional gene expression, structure and function of indigenous consortium during pyrite bioleaching[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,201117(17):8092-8098.
[27] Jian Song;Jianqun Lin;Yilin Ren;Jianqiang Lin.Competitive Adsorption of Binary Mixture of Leptospirillum ferriphilum and Acidithiobacillus caldus Onto Pyrite[J].Biotechnology and bioprocess engineering,20106(6):923-930.
[28] P.R Holmes;F.K. Crundwell.Polysulfides do not cause passivation: Results from the dissolution of pyrite and implications for other sulfide minerals[J].Hydrometallurgy,2013:101-110.
[29] Schippers A;Jozsa PG;Sand W.SULFUR CHEMISTRY IN BACTERIAL LEACHING OF PYRITE[J].Applied and Environmental Microbiology,19969(9):3424-3431.
[30] Comparative XPS study between experimentally and naturally weathered pyrites[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,200921(21):8846-8854.
[31] Wang HM;Bigham JM;Jones FS;Tuovinen OH.Synthesis and properties of ammoniojarosites prepared with iron-oxidizing acidophilic microorganisms at 22-65 degrees C[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,20071(1):155-164.
[32] Sand W;Gehrke T.Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.[J].Research in Microbiology,20061(1):49-56.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%