为了快速直接制造结构复杂、性能优异的个性化医用金属植入体,保证成型件具有良好的组织结构和生物特性,通过激光选区熔化技术对满足ASTMF75要求的CoCrMo合金进行增材制造。通过正交试验和响应曲面设计方法优化致密度工艺参数,观察成型件的微观组织,分析试样在模拟人体体液环境中的耐腐蚀性,并探究热处理工艺对其耐腐蚀性的影响。结果表明:在激光功率168 W、扫描间距0.06 mm、扫描速度550 mm/s时,成型零件的致密度可以达到98.58%,且微观组织均匀。电化学实验结果显示试样的腐蚀电流密度值约为40μA/cm过退火热处理后,腐蚀电流密度仅为20.86μA/cm2,其耐腐蚀性能优于铸造CoCrMo合金的,这为选区激光熔化成型CoCrMo合金在医学植入体方面的应用提供了依据。2,经过退火热处理后,腐蚀电流密度仅为20.86 μA/cm2,其耐腐蚀性能优于铸造CoCrMo合金的,这为选区激光熔化成型CoCrMo合金在医学植入体方面的应用提供了依据。
In order to directly fabricate personalized medical metallic implants with complex structure and excellent properties and ensure the parts have good microstructure and biological characteristics, the CoCrMo alloy satisfying the requirement of ASTMF75 is fabricated by selective laser melting (SLM) technology. The parameters of relative density were optimized by orthogonal experiment and response surface design. The microstructure of the specimens was observed, and the corrosion characteristic of the samples in simulated body fluid environment was analyzed while the influence of heat treatment process on the corrosion resistance was explored. The results show when the laser power is 168 W, the scanning space is 0.06 mm and the scanning speed is 550 mm/s, the relative density of CoCrMo alloy samples fabricated by SLM can reach 98.58%, and the microstructure is homogeneous. The electrochemical experimental results demonstrate that the corrosion current density value of the sample is about 40μA/cm 2, and becomes only 20.86μA/cm2 after annealing heat treatment. The corrosion resistance is better than that of fabricated by casting methods, which provides the basis for the application of CoCrMo alloy directly fabricated by SLM in medical implants.
参考文献
[1] | 杨永强,王迪,吴伟辉.金属零件选区激光熔化直接成型技术研究进展[J].中国激光,2011(06):54-64. |
[2] | 苏海军,尉凯晨,郭伟,马菱薇,于瑞龙,张冰,张军,刘林,傅恒志.激光快速成形技术新进展及其在高性能材料加工中的应用[J].中国有色金属学报,2013(06):1567-1574. |
[3] | 孙婷婷,杨永强,苏旭彬,郭明华.316L不锈钢粉末选区激光熔化成型致密化研究[J].激光技术,2010(04):443-446. |
[4] | 章然,张子群,宋志坚.基于水平集的快速成型技术在颅骨缺损修复中的应用[J].中国生物医学工程学报,2013(03):373-377. |
[5] | SU Xu-bin, YANG Yong-qiang, YU Peng, SUN Jian-feng. Development of porous medical implant scaffolds via laser additive manufacturing[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(S1):s181-s187.,2012. |
[6] | SIMS C T, STOLOFF N S, HAGEL W C. SuperalloysⅡ[M]. New York:Willey, 1987:135-163.,1987. |
[7] | JOHN A D, RICHARD L K, ROBERT P. Cobalt base alloys for biomedical applications[M]. West Conshohocken:Astm International, 1999:15-20.,1999. |
[8] | DAVIS J R. ASM specialty handbook:nickel, cobalt, and their alloys[M]. ASM International Materials Park:The Materials Information Society, 1997:653-654.,1997. |
[9] | NIINOMI M. Metals for biomedical devices[M]. Oxford:Woodhead publishing In Materials, 2010:355-378.,2010. |
[10] | XIN Xian-zhen, XIANG Nan, CHEN Jie, XU Dan, WEI Bin. Corrosion characteristics of a selective laser melted Co-Cr dental alloy under physiological conditions[J].Journal of Materials Science, 2012, 47(12):4813-4820.,2012. |
[11] | VANDENBROUCKE B, KRUTH J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 2007, 13(4):196-203.,2007. |
[12] | TAKAICHI A, SUYALATU, NAKAMOTO T, JOKO N, NOMURA N, TSUTSUMI Y, MIGITA S, DOI H, KUROSU S, CHIBA A, WAKABAYASHI N, IGARASHI Y, HANAWA T. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 21:67-76.,2013. |
[13] | MARECI D, SUTIMAN D, CAILEAN A,BOLAT G. Comparative corrosion study of Ag-Pd and Co-Cr alloys used in dental applications[J]. Bulletin of Materials Science, 2010, 33(4):491-500.,2010. |
[14] | AVERYANOVA M, BERTRAND P, VERQUIN B. Manufacture of Co-Cr dental crowns and bridges by selective laser melting technology[J]. Virtual and Physical Prototyping, 2011, 6(3):179-185.,2011. |
[15] | JEVREMOVIC D, PUSKAR T, KOSEC B, VUKELIC D, BUDAK I, ALEKSANDROVIC S, EGBEER D, WILLIAMS R. The analysis of the mechanical properties of F75 Co-Cr alloy for use in selective laser melting(SLM)manufacturing of removable partial dentures(RPD)[J]. Metallurgija, 2012, 51:171-174.,2012. |
[16] | 王迪,杨永强,吴伟辉.光纤激光选区熔化316L不锈钢工艺优化[J].中国激光,2009(12):3233-3239. |
[17] | MORGAN R, SUTCLIFFE C J, O’NEILL W. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives[J]. Journal of Materials Science, 2004, 39:1195-1205.,2004. |
[18] | MUMTA K A, ERASENTHIRAN P, HOPKINSON N. High density selective laser melting of Waspaloy[J]. Journal of Materials Processing Technology, 2008, 195:77-87.,2008. |
[19] | ZHANG Xin, LI Yong-jun, ZHANG Kui, WANG Chang-shun, LI Hong-wei, MA Ming-long, ZHANG Bao-dong. Corrosion and electrochemical behavior of Mg-Y alloys in 3.5%NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5):1226-1236.,2013. |
[20] | 贺甜,谭澄宇,唐娟,郑勇.铜经MBT和HQ钝化处理后在 3.5%NaCl溶液中的电化学行为[J].中国有色金属学报, 2013, 23(5):1388-1395. HE Tian, TAN Cheng-yu, TANG Juan, ZHENG Yong. Electrochemical behavior of copper passivated by MBT and HQ in 3.5%NaCl solution[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(5):1388-1395.,2013. |
[21] | 刘冶.激光快速成型钴铬合金机械性能及耐腐蚀性研究[D].西安:第四军医大学, 2010:38-46. LIU Ye. A study on mechanical property and corrosion characteristics of Co-Cr alloy fabricated by laser rapid forming method[D]. Xi’an:The Fourth Military Medical University, 2010:38-46.,2010. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%