采用电子显微镜和XRD研究分析Mg-Gd-Y-Zr合金挤压棒材超塑性拉伸前后的微观组织及其超塑性机制.结果表明:在温度为450 ℃、应变速率为2×10~(-4) s~(-1)的变形条件下获得的挤压棒的最大伸长率为410%,应变速率敏感系数为0.54;合金表观变形激活能远高于镁的晶界扩散激活能或晶格扩散激活能,超塑性变形机制为晶格扩散控制的位错协调晶界滑动机制;微孔洞在基体/方形富稀土相界面处萌生,较软的不规则块状β相承受部分塑性变形,松弛了相界处应力集中.
The microstructures and superplastic behavior of the extruded rod of Mg-Gd-Y-Zr alloy before and after tensile were investigated and analyzed by microscopy and XRD. And tensile tests at various temperatures and strain rates were performed. The results show that the extruded rod exhibits the maximum elongation of 410% at 450 ℃ and 2×10~(-4) s~(-1) and the corresponding strain rate sensitivity of 0.54. The apparent activation energy for the superplastic flow is much higher than the activation energy of grain boundary diffusion or lattice diffusion of magnesium. The high ductility is attributable to grain boundary sliding accommodated by dislocation motion assisted by lattice diffusion. The microstructural results show that the cavities nucleate at the interface between the matrix and the cuboidal Re-rich phase, and that the deformable β phase relaxes the stress concentration at the interface by bearing the partial plastic strain.
参考文献
[1] | A. A. Luo .Recent magnesium alloy development for elevated temperature applications[J].International Materials Reviews,2004(1):13-30. |
[2] | Mihriban O. Pekguleryuz;A. Arslan Kayo .Creep Resistant Magnesium Alloys for Powertrain Applications[J].Advanced Engineering Materials,2003(12):866-878. |
[3] | V. Neubert;I. Stulikova;B. Smola;B.L. Mordike;M. Vlach;A. Bakkar;J. Pelcova .Thermal stability and corrosion behaviour of Mg–Y–Nd and Mg–Tb–Nd alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):329-333. |
[4] | Mordike BL. .Creep-resistant magnesium alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1-2 Special Issue SI):103-112. |
[5] | B. Smola;I. Stulfkova;J. Pelcova .Significance of stable and metastable phases in high temperature creep resistant magnesium-rare earth base alloys[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2004(1/2):196-201. |
[6] | 肖阳,张新明,陈健美,蒋浩.Mg-9Gd-4Y-0.6Zr合金挤压T5态的高温组织与力学性能[J].中国有色金属学报,2006(04):709-714. |
[7] | J.J. Blandin .Superplastic Forming of Magnesium Alloys: Production of Microstructures, Superplastic Properties, Cavitation Behaviour[J].Materials Science Forum,2007(0):211-217. |
[8] | del Valle JA;Penalba F;Ruano OA .Optimization of the microstructure for improving superplastic forming in magnesium alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):165-171. |
[9] | 文九巴;杨蕴林;杨永顺;陈拂晓 张柯柯 张耀宗.超塑性应用技术[M].北京:机械工业出版社,2005:306. |
[10] | 马洪涛.MB26合金超塑性的研究[J].材料工程,1998(09):11. |
[11] | Hiroyuki Watanabe;Masao Fukusumi .Mechanical properties and texture of a superplastically deformed AZ31 magnesium alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):153-161. |
[12] | T. Mukai;H. Watanabe .Application of superplasticity in commercial magnesium alloy for fabrication of structural components[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2000(11/12):1314-1319. |
[13] | MABUCHI T A M;ASAHINA T;IWASAKI H;HIGASHI K .Experimental investigation of superplastic behavior in magnesium alloys[J].Materials Science and Technology,1997,13:825-831. |
[14] | Won SY;You BS;Kim YS;Yang SH .Prediction of formability for magnesium alloy sheet using finite element polycrystal model[J].International Journal of Modern Physics, B. Condensed Matter Physics, Statistical Physics, Applied Physics,2006(25/27):4335-4340. |
[15] | Guo Yongchun;Li Jianping;Li Jinshan .Mg-Gd-Y system phase diagram calculation and experimental clarification[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2008(1/2):446-451. |
[16] | J. F. Nie and B. C. Muddle .CHARACTERISATION OF STRENGTHENING PRECIPITATE PHASES IN A Mg-Y-Nd ALLOY[J].Acta materialia,2000(8):1691-1703. |
[17] | S.M. He;X.Q. Zeng;L.M. Peng .Precipitation in a Mg-10Gd-3Y-0.4Zr (wt. percent) alloy during isothermal ageing at 250 deg C[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2006(1/2):309-313. |
[18] | Watanabe H.;Tsutsui H. .Superplastic Behavior in Commercial Wrought Magnesium Alloys[J].Materials Science Forum,2000(0):171-176. |
[19] | LANGDON T G .Unified approach to grain boundary sliding in creep and superplasticity[J].Acta Metallurgica Et Materialia,1994,42(07):2437-2443. |
[20] | J.C. Tan;M.J. Tan .Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):124-132. |
[21] | J. C. Tan;M. J. Tan .Superplasticity in a rolled Mg-3Al-1Zn alloy by two-stage deformation method[J].Scripta materialia,2002(2):101-106. |
[22] | SHERBY O D;WADSWORTH J .Superplastic-Recent advances and future direction[J].Progress in Materials Science,1989,33(03):169-221. |
[23] | Hiroyuki Watanabe;Toshiji Mukai;Koichi Ishikawa .Superplasticity of a Particle-Strengthened WE43 Magnesium Alloy[J].Materials transactions,2001(1):157-162. |
[24] | WU X;LIU Y .Superplasticity of coarse-grained magnesium alloy[J].Scripta Materialia,2002,46(04):269-274. |
[25] | FROST H J;ASHBY M F.Deformation mechanism maps[M].Oxford:pergamon Press,1982 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%