功能材料, 2011, 42(z4): 734-737.
DMC基聚醚多元醇的精制
杨柳 1, , 马卫华 2, , 许健 3, , 系统的最大输出功率及能量转换率.数学模型考虑了系统尺寸、太阳辐射及环境条件对系统最大输出功率的影响.结果表明系统最大输出功率不仅是烟囱高度的函数,同时与太阳辐射及环境参数有很大关系.受结构限制,在太阳辐射强度为1000 W/m2、烟囱高度为100 m时,本系统能量转换率约为0.2%,在设计上可考虑采用多条集热式烟囱通道并联方式来增加集热面积,以达到提高系统最大输出功率的目的.","authors":[{"authorName":"周艳","id":"4ebe6cf9-e907-436f-8528-b8e3c6916d38","originalAuthorName":"周艳"},{"authorName":"李庆领","id":"142c069f-69cb-4fbb-a2dc-b1d01ab56734","originalAuthorName":"李庆领"},{"authorName":"李洁浩","id":"f61988ca-f7fe-46d5-a4c3-b108f44dbc4a","originalAuthorName":"李洁浩"},{"authorName":"刘晓惠","id":"6b04fcc4-4346-49fb-b3a0-9d96acfc6555","originalAuthorName":"刘晓惠"}],"doi":"","fpage":"465","id":"ebaf498e-5a3e-45fc-bac2-137733503e83","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d18d9f90-1d32-4225-8b85-52d38249ca7b","keyword":"太阳能热气流电站","originalKeyword":"太阳能热气流电站"},{"id":"9adee869-dcd2-4e94-a891-15b63e4069ea","keyword":"立式集热热板","originalKeyword":"立式集热热板"},{"id":"24df8723-c6a7-49f0-8724-39e5cb94ddea","keyword":"系统最大输出功率","originalKeyword":"系统最大输出功率"},{"id":"4ca2593c-46f3-4801-9b7f-c7b1a7f298f7","keyword":"系统能量转换率","originalKeyword":"系统能量转换率"}],"language":"zh","publisherId":"gcrwlxb201003027","title":"立式集热板太阳能热气流电站系统研究","volume":"31","year":"2010"},{"abstractinfo":"温差发电器可广泛用于汽车发动机尾气废热的回收.为优化温差发电模块构型和优选热电材料以获得高输出功率,发展完善的热电耦合物理模型十分必要.本文针对工作在特定热源和热沉温度下的温差发电模块,建立了包含基本热电效应的温差发电器工作过程一维物理模型.物理模型中考虑了热电元件与热源和热沉之间的热阻的影响,并从基本理论出发,分析了包含汤姆逊热的输出功率表达式.通过建立的测量系统测试了碲化铋基(BiTe-based)温差发电模块的输出功率,利用热像仪检测了热电元件温度分布,并将输出功率计算结果与实验测试结果和ANSYS三维仿真结果做了对比.对比结果验证了物理模型的准确性.","authors":[{"authorName":"程富强","id":"77acf263-06cd-43d2-b4fb-7e185f053607","originalAuthorName":"程富强"},{"authorName":"洪延姬","id":"645920e6-d490-48f8-834b-770b8d5c8bad","originalAuthorName":"洪延姬"},{"authorName":"杨君友","id":"a1a46069-2e0b-4926-86b4-c318edf8d69e","originalAuthorName":"杨君友"},{"authorName":"祝超","id":"bd865e0e-cb0a-48b6-b56a-f1a08698b623","originalAuthorName":"祝超"}],"doi":"","fpage":"329","id":"4099d9c7-25af-43f3-8b32-9824b06fe633","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"68db4d42-8917-40b6-acd5-cd2ad6ce5686","keyword":"温差电","originalKeyword":"温差电"},{"id":"c403c955-a6be-4b08-ba23-967349da2c25","keyword":"碲化铋","originalKeyword":"碲化铋"},{"id":"cf9cbf17-9335-409e-ba4e-80706f46f524","keyword":"热电模型","originalKeyword":"热电模型"},{"id":"c4d9c1ad-c9bf-466c-80d6-b593cc777505","keyword":"输出功率","originalKeyword":"输出功率"}],"language":"zh","publisherId":"clkxygc201503004","title":"碲化铋温差发电模块输出功率的计算与性能测试","volume":"33","year":"2015"},{"abstractinfo":"利用四能级激光系统的速率方程和类高斯光束倍频理论,计算了在LD阵列侧面泵浦Nd3+:YAG/KTP660 nm红光激光器中,倍频晶体长度与谐波输出功率的函数关系,分析了激光器工作特性,优化选择了腔参数,得到与理论计算符合较好的实验结果.使用长度不同的KTP晶体,在180 W泵浦功率下,谐波输出功率最大输出3.75 W.选择优化的晶体长度,在210 W泵浦功率时,得到功率为5.83 W的660 nm红色激光.","authors":[{"authorName":"陈檬","id":"c73665c6-1966-4689-8373-e43aad8e7c27","originalAuthorName":"陈檬"},{"authorName":"魏剑维","id":"2eca4299-424c-4fa3-9e59-32db72cd9259","originalAuthorName":"魏剑维"},{"authorName":"李港","id":"c9885941-dda6-4098-81c7-d89f808e52ee","originalAuthorName":"李港"},{"authorName":"任锋","id":"e8200769-8c93-41fb-9c53-80a8729443f0","originalAuthorName":"任锋"},{"authorName":"夏军海","id":"80de891c-5534-4dab-8d66-6e33c7840a41","originalAuthorName":"夏军海"},{"authorName":"王菲","id":"4d13d1ef-0dee-4077-b9ae-673a5cf9af36","originalAuthorName":"王菲"},{"authorName":"张炳军","id":"af05d29a-f60b-4fca-85d9-d99e77a8d083","originalAuthorName":"张炳军"}],"doi":"10.3969/j.issn.1007-5461.2005.04.009","fpage":"534","id":"1887424b-20ac-41b9-8764-6b73d9ff26f9","issue":"4","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"378ea0dd-cb68-44b5-8643-d57a5b3a7f41","keyword":"激光技术","originalKeyword":"激光技术"},{"id":"67cd6c72-3ad7-48ea-a09e-1bb29e00b061","keyword":"红色激光","originalKeyword":"红色激光"},{"id":"e1d9e5ab-286c-4b86-9f95-1114d802ba0a","keyword":"倍频理论","originalKeyword":"倍频理论"},{"id":"0622a2ab-9653-4bab-afb1-177c5c2cf3bc","keyword":"最佳倍频晶体长度","originalKeyword":"最佳倍频晶体长度"},{"id":"fc72ddba-a861-4ce5-98c9-94342cc45349","keyword":"侧面泵浦","originalKeyword":"侧面泵浦"}],"language":"zh","publisherId":"lzdzxb200504009","title":"LD侧面泵浦Nd3+:YAG/KTP倍频晶体长度对660 nm激光功率影响的分析","volume":"22","year":"2005"},{"abstractinfo":"为了分析压电双晶体连接形式对振动发电机力电输出特性的影响,并有效改善发电机综合性能,考虑发电机机械端的力-电耦合与电路端的电-电耦合作用,利用压电本构方程建立了双晶压电悬臂式振动发电机的有限元分析动力学方程,利用ANSYS软件建立了相应的有限元机电耦合分析模型,对比分析了在相同外力激振条件下,压电双晶不同连接形式对发电机输出力特性(末端振动速度)和电特性(电压、电流和电输出功率)的影响.最后,对两种类型发电机的电输出功率进行优化分析,得到了压电双晶不同连接形式时发电机的优化负载电阻和最大输出功率.研究结果表明:串联型振动发电机的优化负载电阻是并联型发电机优化负载电阻的4倍;串联型发电机具有较大的输出电压,压电双晶并联型振动发电机具有较大的输出电流,但两者具有相同的最大输出功率.","authors":[{"authorName":"展永政","id":"7944a659-ceb0-484e-b506-ed3197034d7d","originalAuthorName":"展永政"},{"authorName":"王光庆","id":"c01b05bc-cca7-428e-a4fe-473fb3b7abee","originalAuthorName":"王光庆"}],"doi":"","fpage":"48","id":"3722bd4b-973c-42c8-89ef-6c9a16917044","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"fe691262-4b84-44df-9098-18cfdced2f0d","keyword":"压电双晶悬臂梁","originalKeyword":"压电双晶悬臂梁"},{"id":"ea5505f1-d371-4586-b6a7-a5a9de66df24","keyword":"有限元模型","originalKeyword":"有限元模型"},{"id":"e5f6ba4a-d080-41b5-98db-551663a0813c","keyword":"振动发电机","originalKeyword":"振动发电机"},{"id":"9f70af93-44c6-465c-9b3a-5b1092ae6e77","keyword":"连接形式","originalKeyword":"连接形式"},{"id":"e0e34692-60aa-4798-b8fc-0cc9256b2ad7","keyword":"最优负载电阻","originalKeyword":"最优负载电阻"}],"language":"zh","publisherId":"gnclyqjxb201401009","title":"压电双晶连接形式对振动发电机力电输出特性的影响","volume":"20","year":"2014"},{"abstractinfo":"为使输出波长为373.7/370.6 nm的ca+复合激光能达到实际应用的水平,对Ca+复合激光放电管温度场进行了分析,通过求解热流耗散泊松方程,获得了Ca+复合激光放电管气体温度场径向分布的解析表达式,明确了温度分布与输入电功率及缓冲气体热传导系数之间的关系,分析了放电管温度场分布与输出功率的关系,指出径向温度分布不均匀是导致输出功率受限的主要原因之一,其结果与实验一致,为该类激光器的实用化研究提供了理论分析结论.","authors":[{"authorName":"马涛","id":"1c8079bd-40d8-4513-83c2-3dbbe8ed7519","originalAuthorName":"马涛"}],"doi":"10.3969/j.issn.1007-5461.2009.03.006","fpage":"288","id":"d21e0e36-5e22-4307-a405-dd0d4014a21e","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"85a73a95-1321-4df6-b0aa-a13438263b37","keyword":"激光物理","originalKeyword":"激光物理"},{"id":"4a2c3d77-0ae0-4bdf-9839-22ca061f67a0","keyword":"径向温度分布","originalKeyword":"径向温度分布"},{"id":"3affc5e2-b982-4f85-b3d0-15c38c8ba909","keyword":"数值分析","originalKeyword":"数值分析"},{"id":"d34f70eb-a200-4edc-bcac-261cfaeb81eb","keyword":"复合激光","originalKeyword":"复合激光"}],"language":"zh","publisherId":"lzdzxb200903006","title":"放电管温度效应与He-Ca+复合激光功率输出分析","volume":"26","year":"2009"},{"abstractinfo":"研究了高掺杂铒光纤构成的双程后向结构超荧光光源输出特性,高掺杂铒光纤在制作超荧光光源方面具有输出功率高和带宽宽的优点.通过模拟得到在一定泵浦功率下获得最大输出带宽的最佳掺铒光纤长度.利用980 nm半导体激光器泵浦优化得到的10 m长的Lucent-LRL光纤,并用自制光纤圈反射镜构成双程后向结构,获得了26 mW的高功率宽带超荧光输出.","authors":[{"authorName":"黄文财","id":"1a9c6fa8-4361-4a75-91b1-cc9d269d1d08","originalAuthorName":"黄文财"},{"authorName":"王秀琳","id":"b1713f65-106e-4832-9123-a0d53b3bd7c4","originalAuthorName":"王秀琳"},{"authorName":"明海","id":"088f8e74-0f5e-4f2f-801c-165eb3916a58","originalAuthorName":"明海"}],"doi":"10.3969/j.issn.1007-5461.2005.01.018","fpage":"95","id":"cff49e38-aa32-45cc-b62b-b6b4480795f3","issue":"1","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"501f5b47-f3bd-4137-9058-c04adf4d4ae6","keyword":"纤维与波导光学","originalKeyword":"纤维与波导光学"},{"id":"2be55713-77b1-49f0-bca6-6c1831c32b84","keyword":"超荧光光源","originalKeyword":"超荧光光源"},{"id":"e1030ff8-e7dc-4691-99fe-7aafaba96051","keyword":"掺铒光纤","originalKeyword":"掺铒光纤"},{"id":"d867d982-fcd3-40fd-9099-d9779156ccac","keyword":"双程后向","originalKeyword":"双程后向"}],"language":"zh","publisherId":"lzdzxb200501018","title":"高功率宽带掺铒光纤超荧光光源研究","volume":"22","year":"2005"},{"abstractinfo":"本文借助TRNSYS软件建立了具有辅助锅炉,无蓄热和回热系统的典型槽式太阳能有机朗肯循环热发电系统,采用西安地区的气象参数作为输入,分析讨论了槽式集热器不同跟踪方式的差异、有机工质和蒸发温度对有机朗肯循环的效率和输出功率的影响、循环冷却水流量与输出功率的关系.模拟结果表明:在全年大部分时期,槽式集热器的南一北轴跟踪效率优于东一西轴跟踪;在相同条件下,采用蒸发温度高的有机工质,系统的输出功率和循环效率较好;对于不同的运行参数,存在一个最佳循环冷却水流量,使系统的净输出功率最大.","authors":[{"authorName":"刘怀亮","id":"c2933d84-2a20-4d3b-b0de-2a41f38ac009","originalAuthorName":"刘怀亮"},{"authorName":"何雅玲","id":"cbe25014-c9f3-48c7-97bb-c204dceb0715","originalAuthorName":"何雅玲"},{"authorName":"程泽东","id":"d7e7d35d-0187-461b-9445-a56d0016a6c5","originalAuthorName":"程泽东"},{"authorName":"崔福庆","id":"890089f5-7f6c-4e88-8e0c-fceb0edf3aa7","originalAuthorName":"崔福庆"}],"doi":"","fpage":"1631","id":"415d6b61-ad45-43ae-b390-fba9edd23e0b","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"24fa17b8-0733-499a-a4e3-8dd8be4a193b","keyword":"TRNSYS","originalKeyword":"TRNSYS"},{"id":"b999e04a-370b-4dff-97fc-4945f885c801","keyword":"太阳能热发电系统","originalKeyword":"太阳能热发电系统"},{"id":"b6079d25-955d-481a-8c01-2977e10e0064","keyword":"槽式集热器","originalKeyword":"槽式集热器"},{"id":"18b9d8cc-ffab-493f-bd1c-3d3d8b52c6a8","keyword":"有机朗肯循环","originalKeyword":"有机朗肯循环"}],"language":"zh","publisherId":"gcrwlxb201010003","title":"槽式太阳能有机朗肯循环热发电系统模拟","volume":"31","year":"2010"},{"abstractinfo":"为了控制某一环境下光的强度,提出了输出光强恒定的液晶自动调节系统,并对系统的原理及功能进行了研究.介绍了液晶电光调制原理及光电传感器和单片机控制原理.对系统的开发进行了阐述,详细介绍了构成系统的每一个模块的结构及工作原理.该系统具有以下4个功能:维持特定空间光照强度不变,调节特定空间内的光照强度,显示当前工作状态,测试液晶盒电光特性曲线.该系统适用于恒定光强环境和由光能转化的恒温系统.","authors":[{"authorName":"叶文江","id":"48846257-2df5-484c-9326-c85b2ebafbf1","originalAuthorName":"叶文江"},{"authorName":"苏军红","id":"0c20a7cf-4b0e-4033-b01c-f88deacea669","originalAuthorName":"苏军红"},{"authorName":"刘晓梦","id":"e73336ad-72d2-444c-ac88-44e2781c0c1f","originalAuthorName":"刘晓梦"},{"authorName":"马志达","id":"a3e5f22d-dfe4-4d06-a8be-71d46c9ad9f6","originalAuthorName":"马志达"},{"authorName":"黄媛媛","id":"9032e30f-a6b8-4dc6-b487-3ba962627f08","originalAuthorName":"黄媛媛"}],"doi":"10.3788/YJYXS20142904.0538","fpage":"538","id":"a2ee51a5-3b4b-4604-b631-acbdcf3b3dff","issue":"4","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"ad644fa7-7d5b-41b1-b589-596128afd33e","keyword":"液晶","originalKeyword":"液晶"},{"id":"9e8dd37b-f9c3-4c56-86c6-828558cba7c8","keyword":"自动调节系统","originalKeyword":"自动调节系统"},{"id":"e2779e17-28f5-4011-b558-3d6658a72e13","keyword":"电光效应","originalKeyword":"电光效应"},{"id":"fe467554-605a-4377-9a74-1a1b014b5e4d","keyword":"光电传感器","originalKeyword":"光电传感器"},{"id":"da854030-e439-47fd-8134-8b1cde6fdf23","keyword":"单片机","originalKeyword":"单片机"}],"language":"zh","publisherId":"yjyxs201404011","title":"输出光强恒定的液晶自动调节系统","volume":"29","year":"2014"},{"abstractinfo":"报道了915~980nm半导体激光器的最新进展,宽条激光器输出功率为0.2~2.0W,最大输出功率大于5W;基横模脊形波导半导体激光器输出功率达400mW,水平和垂直方向远场发射角分别为70和230,组合件输出功率大于150mW.","authors":[{"authorName":"徐遵图","id":"23a66f3b-7f9a-4879-897e-604f84903087","originalAuthorName":"徐遵图"},{"authorName":"张敬明","id":"dc683353-936b-4753-b306-a9a29e321a8a","originalAuthorName":"张敬明"},{"authorName":"马骁宇","id":"6e066fac-7a14-471f-b3b0-578f3e63a362","originalAuthorName":"马骁宇"},{"authorName":"刘素平","id":"0e1a2486-9d8d-4a2e-b087-08aa82e61a3a","originalAuthorName":"刘素平"},{"authorName":"刘忠顺","id":"c4efd6b3-381a-407c-8448-13d571f37845","originalAuthorName":"刘忠顺"},{"authorName":"方高瞻","id":"9e4c7121-13ca-412d-972f-45724cbdc77c","originalAuthorName":"方高瞻"},{"authorName":"肖建伟","id":"e9cdfb05-9e4c-4362-b03b-5407e882c982","originalAuthorName":"肖建伟"},{"authorName":"陈良惠","id":"7753be4f-c6d5-41a3-b297-0ea26dd5f406","originalAuthorName":"陈良惠"}],"doi":"10.3969/j.issn.1007-4252.2000.03.041","fpage":"293","id":"a84051cd-ca8b-45e2-be03-585ca1ffbb9d","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"5b2ceb6d-13bc-45c5-b966-cf0a0555abdd","keyword":"980nm","originalKeyword":"980nm"},{"id":"dcc6aa9a-2190-40ac-8e69-97e86f5c0281","keyword":"应变量子阱","originalKeyword":"应变量子阱"},{"id":"d78c3ab6-7214-4256-8ad7-81b126807826","keyword":"激光器","originalKeyword":"激光器"}],"language":"zh","publisherId":"gnclyqjxb200003041","title":"915-980nm应变量子阱激光器新进展","volume":"6","year":"2000"},{"abstractinfo":"自行研制紫外微加工系统,系统有效工作范围120 mm×120 mm,最小加工线宽80 μm,系统操作简单、运行稳定高效.实验中完成对Nd:YAG紫外激光器、XY扫描振镜以及F-Theta平场透镜设计.实现波长355 nm紫外激光最高平均功率2.13 W稳定输出,1 h内输出功率波动小于7%;XY振镜最大扫描角度+28°,线性响应速度0.35~0.5 ms;F-Theta视场角为±25°,有效焦距为250 mm.最后对系统存在的问题进行了分析.","authors":[{"authorName":"董云升","id":"dc0fe374-bb12-41f4-a06d-659b3aad615a","originalAuthorName":"董云升"},{"authorName":"郭强","id":"52517292-a42f-4cb9-b717-73b8d75416ab","originalAuthorName":"郭强"},{"authorName":"张少飞","id":"7550ee4d-210f-457a-93c3-34f32bdb4868","originalAuthorName":"张少飞"},{"authorName":"吴边","id":"1b4c2905-3a17-4851-b454-12232843e7b5","originalAuthorName":"吴边"},{"authorName":"王首长","id":"6efc7c53-b0a8-4cc9-8b48-315f56b51894","originalAuthorName":"王首长"},{"authorName":"胡爱兰","id":"cf10ef93-209f-4f0c-818d-435d8d10a7f5","originalAuthorName":"胡爱兰"}],"doi":"10.3969/j.issn.1007-5461.2008.04.017","fpage":"478","id":"b9136f01-0ab2-4172-ad78-0f5b7952b8c5","issue":"4","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"16c03ca1-0693-4c56-9bec-ccf64e39c5a0","keyword":"激光技术","originalKeyword":"激光技术"},{"id":"db3754e8-9a0f-4086-b066-e7fac45f81fc","keyword":"微加工系统","originalKeyword":"微加工系统"},{"id":"107163f3-490f-48e2-88bf-9a0d887712ff","keyword":"紫外激光","originalKeyword":"紫外激光"},{"id":"79b4f4ae-5bb9-4763-a7fd-78927226a40d","keyword":"XY振镜","originalKeyword":"XY振镜"},{"id":"d294258b-1fa8-49fd-ab31-43faa6659b60","keyword":"F-Theta平场镜","originalKeyword":"F-Theta平场镜"}],"language":"zh","publisherId":"lzdzxb200804017","title":"基于二极管泵浦Nd:YAG激光器的紫外微加工系统研制","volume":"25","year":"2008"}],"totalpage":2946,"totalrecord":29460}