欢迎登录材料期刊网

材料期刊网

高级检索

以6-氨基己酸(6-aminohexanoic acid,N6)和丁内酰胺(又名α-吡咯烷酮,α-pyrrolidone,α-P)为原料,通过6-氨基己酸熔融缩聚使丁内酰胺开环制备了一系列新型聚酰胺,优化选取6-氨基己酸与丁内酰胺摩尔比为7∶3的聚合物作为基体与硫酸钙(CS)复合,制备了新型可降解硫酸钙/聚酰胺复合材料。通过乌氏粘度计、万能力学实验机、红外光谱(IR)、差示扫描量热分析(DSC)、X射线衍射(XRD)和X光电子能谱(XPS)对其特性黏数、抗压强度及组成与结构进行了表征,并研究了复合材料在磷酸缓冲溶液(PBS)的体外降解性能。结果表明产物为具有酰胺键结构的聚合物,6-氨基己酸与丁内酰胺摩尔比为7∶3时聚合物既能最大程度地引入丁内酰胺又具有较好的力学性能。复合材料无机相与有机相之间存在化学键作用。体外降解实验表明本文合成的聚酰胺是可降解的;相比于聚合物,硫酸钙/聚酰胺复合材料具有更快的降解速率;随着硫酸钙含量的增加,复合材料的失重率增加;在降解过程中降解液pH值维持在6.6~7.4之间。由于复合材料既具备有机组分良好的力学性能又具备硫酸钙良好的生物相容性和降解性能,所以该硫酸钙/聚酰胺复合材料可望在骨修复领域得到运用。

A novel biodegradable polyamide was prepared by in ring opening melting polymerization based on 6- aminocaproic acid and a-pyrrolidone, then N6P30 (when the molar ratio of 6-aminocaproic acid and a-pyrroli- done is 7 : 3) and its composite material with calcium sulfate (CS/N6P30) was synthesized. They were characterized by infrared spectrometer (IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and differential scanning calorimeter (DSC). Its properties of the viscosity of polymer were investigated by means of ubbelohde viscometer the mechanical properties were characterized by compressive strength and the in vitro degradability of the composite was determined in phosphate buffered saline (PBS). The results indicated that the polymer was a kind of polyamide, the reaction become more and more difficult with increasing of the proportion of a-pyrrolidone, it has both good mechanical property and the greatest degree of introduction of a-pyrrolidone when the molar ratio of 6-aminocaproic acid and a-pyrroiidone was 7 :3. PBS experiment indicated that CS/N6P30 was more degradable than N6P30~ degradability of composite materials enhanced with increasing calcium sulfate amount; the pH of soaking medium maintained in the range of 6.6-7.4 during the immersion period. Composite material not only has the good mechanical properties as that of N6P30, but also the biocompatibility as that of CS,so this composite can be potentially used as bone repair materials.

参考文献

[1] 田丰,成国祥,刘长军,陈世谦.骨组织损伤修复生物医用材料的研究进展[J].医疗卫生装备,2005(02):22-23,25.
[2] 张宏全;闫玉华;李世普 .[J].北京生物医学工程,2000,19:55-59.
[3] 卢建军,施君,刘妙青,阎耀东,赵晓博.沉淀聚合法制备聚酰胺酸微粒子及其酰亚胺化[J].功能材料,2010(04):558-561.
[4] Hong S M;Hwang S S;Jeon B H et al.[J].Journal of Materials Science,2005,40(14):3857-3859.
[5] Garcia-Lopez D;Gobernado-Mitre I;Fernandez J F et al.[J].Polymer Bulletin,2009,62(06):791-800.
[6] 严永刚,李玉宝,张利,彭雪林,许凤兰,王学江,杨晓庆.纳米HA/PA6复合材料的体外生物活性[J].复合材料学报,2004(02):147-152.
[7] 彭雪林,李玉宝,王学江,严永刚,魏杰,张利.医用纳米羟基磷灰石/聚酰胺66复合材料体外浸泡行为研究[J].功能材料,2004(02):253-256.
[8] 魏杰,LI Yubao,YAN Yonggang,Zuo Yi.Development of Clinical Cement of Nanoapatite and Polyamide Composite[J].高技术通讯(英文版),2001(04):8-12.
[9] Hashimoto K;Hamano T;Okada M .[J].Application of Polymer Science,1994,54:1579-1583.
[10] Kawasaki N;Aiba S .[J].Polymer,2005,46:9987-9993.
[11] 宋波 .[J].技术开发,1990,2:17-19.
[12] 应小樟,徐华梓.硫酸钙制剂在骨科的应用[J].国际骨科学杂志,2006(02):86-88.
[13] 田学忠,刘越,陈华,张伯勋.硫酸钙人工骨研究进展[J].山东医药,2008(09):143-144.
[14] Ruhaimi K A .[J].International Journal of Oral and Maxillofacial Surgery,2001,30:228-233.
[15] Li Haiyan;Chang Jiang .[J].Polymer Degradation and Stability,2005,87:301-307.
[16] Orava E;Korventausta J;Rosenberg M;Jokinen M;Rosling A .In vitro degradation of porous poly(DL-lactide-co-glycolide) (PLGA)/bioactive glass composite foams with a polar structure[J].Polymer Degradation and Stability,2007(1):14-23.
[17] 黄兆龙,张伟,崔福斋.胶原调制磷酸钙矿化成核位点的红外光谱研究[J].光谱学与光谱分析,2004(05):539-542.
[18] 郭颖,李玉宝,严永刚.纳米磷灰石晶体/聚酰胺66复合材料的制备和界面研究[J].四川大学学报(自然科学版),2002(03):479-483.
[19] 张建;李厚山;王会民 等.[J].中国矫形外科杂志,2007,15:1178-1182.
[20] 聂洪歧;陈艺新;尹培荣 等.[J].贵州医药,2003,27(10):938-941.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%