欢迎登录材料期刊网

材料期刊网

高级检索

采用硬度检测、透射电镜观察、选区电子衍射等方法,研究了Al-Cu合金固溶态、含θ'相和含θ相的试样在强变形诱导析出相低温回溶后的加热退火过程中晶粒尺寸、高角晶界百分比及组织结构和硬度的变化.试验结果显示:当退火温度低于150℃时,A1-Cu合金三种状态的试样其晶粒尺寸与高角晶界的百分数基本上没有变化;加热温度至200℃以上后,晶粒尺寸、高角晶界百分比开始增加;加热至250 ℃时,固溶态试样的晶粒尺寸长大至100 μm左右,含析出相的试样品粒尺寸保持在10.0~15.0μm.在250 ℃退火50 min后,固溶态试样的硬度值一直低于含θ'、θ析出相试样的硬度值.

参考文献

[1] Nong Gao;Marco J. Starink;Minoru Furukawa .Evolution of Microstructure and Precipitation in Heat-Treatable Aluminium Alloys during ECA Pressing and Subsequent Heat Treatment[J].Materials Science Forum,2006(0):275-280.
[2] Ruslan Z. Valiev;Terence G. Langdon .Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in materials science,2006(7):881-981.
[3] Xu C;Furukawa M;Horita Z;Langdon TG .Influence of ECAP on precipitate distributions in a spray-east aluminum alloy[J].Acta materialia,2005(3):749-758.
[4] J. Cizek;I. Prochazka;B. Smola;I. Stulikova;R. Kuzel;Z. Matej;V. Cherkaska;R.K. Islamgaliev;O. Kulyasova .Microstructure and thermal stability of ultra fine grained Mg-based alloys prepared by high-pressure torsion[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):121-126.
[5] Zhilyaev A P;Langdon T G .Using high-pressure torsion for metal processing:fundamentals and applications[J].Progress in Materials Science,2008,53:893-979.
[6] Kwan, C;Wang, ZR;Kang, SB .Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100[J].Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1-2):148-159.
[7] Min B K;Kim H W;Kang S B .Effect of Al3Sc precipitate on the microstructural evolution during accumulative roll bonding in Al-0.2wt% Sc alloy[J].Journal of Materials Processing Technology,2005,162-163:355-361.
[8] B. Cherukuri;T.S. Nedkova;R. Srinivasan .A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(0):394-397.
[9] Cherukuri B;Srinivasan R .Properties of AA6061 processed by multi-axial compressions/forging(MAC/F)[J].Materials and Manufacturing Processes,2006,21(05):519-525.
[10] 党朋,许晓嫦,刘志义,于文斌,宁爱林,曾苏民.铝合金等径角挤压和多向压缩变形中析出相的回溶研究[J].材料热处理学报,2007(05):82-85.
[11] M. MURAYAMA;Z. HORITA;K. HONO .MICROSTRUCTURE OF TWO-PHASE Al-1.7 at/100 Cu ALLOY DEFORMED BY EQUAL-CHANNEL ANGULAR PRESSING[J].Acta materialia,2001(1):21-29.
[12] Kang S B;Lim C Y;Kim H W et al.Microstructure evolution and hardening behavior of 2024 aluminum alloy processed by severe plastic deformation[J].Materials Science Forum,2002,396-402(02):1163-1168.
[13] XU Xiao-chang,LIU Zhi-yi,LI Yun-tao,DANG Peng,ZENG Su-min.Evolution of precipitates of Al-Cu alloy during equal-channel angular pressing at room temperature[J].中国有色金属学会会刊(英文版),2008(05):1047-1052.
[14] 郑子樵.材料科学基础[M].长沙:中南大学出版社,2005:403-406.
[15] Furukawa M;Horita Z;Zhilyaev A P et al.Developing ultrafine-grained mierostructures through the use of severe plastical deformation[J].Materials Science Forum,2003,42(06):2631-2636.
[16] C.P. Heason;P.B. Prangnell .Grain Refinement and Texture Evolution during the Deformation of Al to ultra-high Strains by Accumulative Roll Bonding (ARB)[J].Materials Science Forum,2002(Pt.1):429-434.
[17] Prangnell P H;Bowen J R;Apps P J .Ultra-fine grain structure in aluminum alloys by severe deformation processing[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,375-377:178-185.
[18] Dobatkin S V .On the increase of thermal stability of ultrafine grained material obtained by severe plastic deformation[J].Materials Science Forum,2003,426-432:2699-2704.
[19] S. Lee;A. Utsunomiya;H. Akamatsu .Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys[J].Acta materialia,2002(3):553-564.
[20] Cheng Xu;Minoru Furukawa;Zenji Horita .Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy[J].Acta materialia,2003(20):6139-6149.
[21] J. Mao;S.B. Kang;J.O. Park .Grain refinement, thermal stability and tensile properties of 2024 aluminum alloy after equal-channel angular pressing[J].Journal of Materials Processing Technology,2005(3):314-320.
[22] Terence G. Langdon .The principles of grain refinement in equal-channel angular pressing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):3-11.
[23] Shogo Komura;Minoru Furukawa;Zenji Horita;Minoru Nemoto;Terence G. Langdon .Optimizing the procedure of equal-channel angular pressing for maximum superplasticity[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(1/2):111-118.
[24] Si-Young Chang;Jung Guk Lee;Kyung-Tae Park .Microstructures and Mechanical Properties of Equal Channel Angular Pressed 5083 Al Alloy[J].Materials transactions,2001(6):1074-1080.
[25] WANG Jing-tao;Horita Z;Furukawa M et al.An investigation of ductility and microstructural evolution in an Al-3% Mg alloy with submicron grain size[J].Journal of Materials Research,1993,8(11):2810-2818.
[26] Wang ZC.;Prangnell PB. .Microstructure refinement and mechanical properties of severely deformed Al-Mg-Li alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):87-97.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%