针对电子器件的高效冷却问题,对表面加工有微结构的硅片上FC-72的池沸腾换热性能进行了实验研究.测试了四种表面微结构,采用化学蒸汽沉积法在芯片表面生成一SiO2薄层所形成的亚微米粗糙面(Chip CVD),采用溅射方法在芯片表面生成一SiO2薄层,然后再对SiO2层进行湿式腐蚀技术处理形成的亚微米粗糙面(Chip E),采用一系列微电子加工技术生成的微米级双重入口洞穴(Chip CAVITY)以及采用干式腐蚀方法生成的方柱微结构(Chip PF).实验所得的沸腾曲线表明,所有微结构表面与光滑面(Chip S)相比都显示出较大的强化沸腾换热效果,临界热流密度按芯片S、E、CVD、CAVITY和PF的顺序增大.对于芯片PF来说,随着壁面过热度的增加,热流量呈剧烈的增加趋势且临界热流密度时芯片的表面温度低于芯片回路正常工作的临界上限温度85℃,最大临界热流密度可达80 W/cm2.
参考文献
[1] | Nelson L A;Sekhon K S;Fritz J E.Direct Heat Pipe Cooling of Semiconductor Devices[A].London:Oxford,1978:373-376. |
[2] | Anderson T M;Mudawar I .Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid[J].ASME Journal of Heat Transfer,1989,111(04):752-759. |
[3] | Oktay S.Departure from Natural Convection (DNC) in Low-Temperature Boiling Heat Transfer Encountered in Cooling Micro-Electronic LSI Devices[A].Munich,Germany,1982:113-118. |
[4] | O'Connor J P;You S M;Price D C .Thermal Management of High Power Microelectronics Via Immersion Cooling[J].IEEE Transactions on Components Packaging and Manufacturing Technology,1995,18(03):656-663. |
[5] | J. P. O'Connor;S. M. You;J. Y. Chang .Gas-saturated pool boiling heat transfer from smooth and microporous surfaces in FC-72[J].Journal of heat transfer: Transactions of the ASME,1996(3):662-667. |
[6] | Chang J Y;You S M .Enhanced Boiling Heat Transfer from Micro-Porous Surfaces:Effects of a Coating Composition and Method[J].International Journal of Heat and Mass Transfer,1997,40(18):4449-4460. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%