本论文通过对β-Si3N4粉末的加入量、烧结助剂的种类及煅烧温度等参数的合理选择及优化,达到对β-Si3N4晶粒尺寸和形貌的有效控制,并探讨分析β -Si3N4晶种的反应机理.以MgO、Y2O3及SiO2为助烧剂,加入一定量的β-Si3N4粉末,通过对原始α-Si3N4粉末进行热处理,经去除掉玻璃相等漂洗工艺后,制备出相变充分、具有柱状形貌β-Si3N4晶种.重点研究了β-Si3N4粉末加入量及助烧剂种类对Si3N4相变、晶体形貌及晶粒尺寸分布的影响.研究结果表明:β-Si3N4粉末添加量10 wt%、MgO添加量5wt%时,在1750℃下热处理1.5h能得到具有比较理想长径比、缺陷少且晶粒尺寸与长径比分布较均匀β-Si3N4品种,平均长径比接近于7.0.
参考文献
[1] | 王林;郑隆烈;雷兴业 等.烧结氮化硅晶界玻璃相的结晶化及其对高温强度的影响[J].硅酸盐学报,1988,16(04):333-338. |
[2] | Coble R L;Kingery W D .Effect of Porosity on Physical Properties Sintered Alumina[J].Journal of the American Ceramic Society,1956,39:377-385. |
[3] | Lange M .Stability of Intergranular Phases in Hot-pressed Si3N4 Studied with Mechanical Spectroscopy and In-situ High-temperature XRD[J].Journal of the American Ceramic Society,1979,22:428-430. |
[4] | C.-W.LI;F.REIDINGER .MICROSTRUCTURE AND TENSILE CREEP MECHANISMS OF AN IN SITU REINFORCED SILICON NITRIDE[J].Acta materialia,1997(1):407-421. |
[5] | Dong-Soo Park;Chang-Won Kim .Anisotropy of silicon nitride with aligned silicon nitride whiskers[J].Journal of the American Ceramic Society,1999(3):780-782. |
[6] | 罗学涛,袁润章.β晶种增韧Si3N4复合材料的制备和力学性能[J].硅酸盐学报,1999(04):461-465. |
[7] | Horng-Hwa Lu;Jow-Lay Huang .Microstructure in Silicon Nitride containing β-Phase Seeding: III, Grain Growth and Coalescence[J].Journal of the American Ceramic Society,2001(8):1891-1895. |
[8] | Horng-Hwa Lu;Jow-Lay Huang .Microstructure of Silicon Nitride Containing beta-Phase Seeds: II[J].Journal of the American Ceramic Society,2002(9):2331-2336. |
[9] | Bo Wang;Jun Yang;Rui Guo .Microstructure characterization of hot-pressed beta-silicon nitride containing beta-Si_3N_4 seeds[J].Materials Characterization,2009(8):894-899. |
[10] | Wang, B;Yang, J;Guo, R;Gao, JQ;Yang, JF .Microstructure and boundary phases of Lu-Al-doped silicon nitride by pressureless sintering[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):79-83. |
[11] | Hirao K;Ksuge A;Brito M E et al.Preparation of Rod-like β-Si3N4 Single Crystal Particles[J].Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi / Journal of the Ceramic Society of Japan,1993,101(09):1078-1080. |
[12] | Peelamedu D. Ramesh;Rainer Oberacker;Michael J. Hoffmann .Preparation of β-silicon nitride seeds for self-reinforced silicon nitride ceramics[J].Journal of the American Ceramic Society,1999(6):1608-1610. |
[13] | Manuel Belmonte;Pilar Miranzo;M.Isabel Osendi .A method for disentangling beta-Si3N4 seeds obtained by SHS[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2008(3):364-367. |
[14] | 许兴利,周龙捷,马利国,代建清,黄勇,谢志鹏.β-Si3N4单晶体的制备[J].材料工程,2001(02):17-18,21. |
[15] | Wang B;Yang J;Guo R et al.Microstructure and of Hot-pressed β-silicon Nitride Containing β-Si3 N4 Seeds[J].Materials Characterization,2009,60:894-899. |
[16] | 仝建峰,钟凌生.以MgO为助剂β-Si3N4晶种的制备与表征[J].航空材料学报,2008(06):93-95. |
[17] | 李世普.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1990:121-123. |
[18] | Sarin V K .On the Alpha-to-beta Phase Transformation in Silicon Nitride[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1988,105/106:151. |
[19] | Hyoungjoon Park;Hyoun-Ee Kim;Koichi Niihara .Microstructural evolution and mechanical properties of Si_3N_4 with Yb_2O_3 as a sintering additive[J].Journal of the American Ceramic Society,1997(3):750-756. |
[20] | 金志浩;高积强;乔冠军.工程陶瓷材料[M].西安:西安交通大学出版社,2000:150-151. |
[21] | 罗学涛;张立同 .氮化硅陶瓷自增韧技术进展[J].复合材料学报,1997,14(03):1-8. |
[22] | Mitomo M;Yang N;Kishi Y et al.Influence of Powder Characteristics on Gas Pressure Sintering of Si3 N4[J].Journal of Materials Science,1988,23(09):3413-3419. |
[23] | Hirosaki N;Akimune Y .Effect of Grain Growth of β-silicon Nitride on Strength,Weibull Modulus and Fracture Toughness[J].Journal of the American Ceramic Society,1993,76(07):1892-1894. |
[24] | 江东亮.精细陶瓷材料[M].北京:中国物资出版社,2000:87. |
[25] | Yang J;Wang B;Gao J Q et al.Preparation and Characterization of Rod-like β-Si3 N4 Seeds[J].Key Engineering Materials,2005,280-283:1223-1122. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%