将分形理论引入到射流电沉积中,编程模拟了不同沉积几率时枝晶的生长形貌。基于模拟的原理,利用摆动射流电沉积,使金属离子更容易到达已沉积枝晶簇的内部而沉积,改变了枝晶的树枝状分形生长特性,制备了不同射流速度和电解液温度下的二维多孔交织的金属镍枝晶簇。结果表明:沉积几率的减小,使粒子簇的形貌转变为致密的多孔交织的组织。在摆动射流电沉积中,射流速度的增大,使枝晶簇的孔隙增大、组织均匀,多孔交织的形态更为明显。射流速度最大时,枝晶簇的形貌再次呈现致密型。分形维数随射流速度的增大逐渐减小。电解液温度的升高,使枝晶簇的形貌向致密型转变,分形维数逐渐增大。
By introducing fractal theory to the jet-electrodeposition technology,the dendrite growth morphology of different deposition probabilities during the jet-electrodeposition were successfully simulated.Based on the simulation,using swinging jet-electrodeposition method,it was easier for metal ions to reach and deposit on inside of the already deposited dendrite clusters,therefore,the branch-like morphology of fractal growth was altered and the porous interlaced dendrites at different jet speeds and electrolyte temperatures were obtained.Results indicate that,as the depositing probability decreases,the formation of dendrite clusters turns into dense interlaced structure;as the jet speed increases,the dendritic growth has an obvious change into interlaced,porous and uniform structure with enlarged pores.When the jet speed is highest,the formation of the dendrite changes into dense growth again.Meanwhile,the fractal dimension decreases along with the increase of jetting speed.As the electrolyte temperature increases,dendrite morphology changes to dense structure,accompanied by an increase in the fractal dimension.
参考文献
[1] | Matsushita M;Sano M;Hayakawa Y et al.Fractal structures of zinc metal leaves grown by electrodeposition[J].Physical Review Letters,1984,53(03):286-289. |
[2] | Witten T A;Sander L M .Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids[J].Physical Review Letters,1981,47(25):1400-1408. |
[3] | Mogi I;Okubo S;Nakagawa Y .Dense radical growth of silver metal leaves in a high magnetic field[J].Journal of the Physical Society of Japan,1991,60:3200-3202. |
[4] | Banhart J .Manufacture characteristion and application of cellular metals and metal foams[J].Progress in Materials Science,2001,46:559-632. |
[5] | Brady R M;Ball R C .Fractal growth of copper electrodeposits[J].Nature,1984,309(05):225-229. |
[6] | Sawada Y;Dougherty A;Gollub J P .Dendritic and fractal patterns in electrolytic metal deposits[J].Physical Review Letters,1986,56(12):1260-1263. |
[7] | 乔桂英,荆天辅,高明,王艳,高聿为,韩东升.高速喷射电沉积块体纳米晶C0-Ni合金[J].材料热处理学报,2004(01):61-65. |
[8] | 王桂峰,黄因慧,田宗军,刘志东,陈劲松,高雪松.平行板电极喷射电沉积中的枝晶分形生长[J].华南理工大学学报(自然科学版),2008(04):35-39. |
[9] | Hepel T .Effect of surface diffusion in electro-deposition of fractal structures[J].Journal of Electrochemical Science and Technology,1987,134(11):2685-2690. |
[10] | Chao-peng C;Jorne J .Fractal analysis of zinc electrodeposition[J].Journal of the Electrochemical Society,1990,137(07):2047-2051. |
[11] | 赵剑峰,黄因慧,吴安德.射流电沉积快速成形技术基础试验研究[J].机械工程学报,2003(04):75-78. |
[12] | Grier D;Ben-Jacob E .Morphology and microstructure in electrochemical deposition of zinc[J].Physical Review Letters,1986,56(12):1264-1267. |
[13] | Hibbert D B;Melrose J R .Copper electrodeposits in paper support[J].Physical Review A,1988,38(02):1036-1048. |
[14] | 康进兴,赵文轸,徐英鸽,孙立明.工艺参数对电沉积纳米晶镍沉积速率的影响[J].材料热处理学报,2008(03):152-155. |
[15] | 陈书荣,谢刚,崔衡,马文会.金属铜电沉积过程中分形研究[J].中国有色金属学报,2002(04):846-850. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%