以柠檬酸、EDTA为络合剂,CoCl2、SnCl4为主盐的基础电解液,首先在基础电解液中加入硬碳制备Sn-Co-C复合电极材料.SEM观察表明获得的Sn-Co-C复合电极表面为镶嵌C小颗粒的菜花状结构,C物理夹杂在Sn-Co合金中,硬碳的引入使得电极材料的循环性能得到提高,首次充放电比容量分别为563.8和763.2 mA·h/g,而经过50次循环后充放电比容量分别为400.3和416.2 mA·h/g.然后,在基础电解液中加入甲酸,在聚苯乙烯微球(PS)为模板的辅助下制备孔状结构Sn-Co-C复合材料.获得的材料中Sn、Co、C的原子比分别为36.87%,2.82%,20.61%.充放电测试结果表明,孔状结构的Sn-Co-C电极表现出更好的循环性能,首次充放电比容量分别为821.1和946.6 mA·h/g,循环第50次后充放电比容量为401和457.6 mA·h/g,循环第60次后充放电比容量为349.7和401.5 mA·h/g,放电比容量达到400 mA·h/g以上.
参考文献
[1] | Mao O;Dunlap R A;Dahn J R .Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries Ⅰ.the Sn2Fe-C system[J].Elctrochem Soc,1999,146(02):405-413. |
[2] | Egashira M;Takatsuji H;Okada S et al.Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries[J].Journal of Power Sources,2002,107(02):56-60. |
[3] | Yang J;Wachtler M;Winter M.Sub-microcrystaline Sn and Sn SnSb powders as lithium storage materials for lithium-ion batteries[J].Electrochemical and Solid State Letters,1999(02):161. |
[4] | Hassoun J;Mulas G;Panero S;Scrosati B .Ternary Sn-Co-CLi-ion battery electrode material prepared by high energy ball milling[J].Electrochemistry communications,2007(8):2075-2081. |
[5] | Kim H.;Kim DG.;Sohn HJ.;Kang T.;Kim YJ. .Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries[J].Solid state ionics,2001(1/2):41-49. |
[6] | Kim Y;Lee S J;Baik H K et al.Sn-Zr-Ag alloy thin-film anodes[J].Journal of Power Sources,2003,151(03):119-121. |
[7] | 王朋朋,于维平.共沉积Co3O4-石墨负极材料及其在锂离子电池中的循环性能[J].金属热处理,2007(06):19-22. |
[8] | Bartlett PN.;Baumberg JJ.;Birkin PR.;Ghanem MA.;Netti MC. .Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres[J].Chemistry of Materials,2002(5):2199-2208. |
[9] | Beseubard J O;Yang J;Winter M .Will advanced lithium-alloy anodes have a chance in lithium-ion batteries[J].Journal of Power Sources,1997,68:87. |
[10] | Kepler K D;Vaughey J T;Thackeray M M .LixCu6 Sn5(0 《 x 《 13):An intermetallie inser ~ on electrode for rechargeable lithium batteries[J].Electrochemical and Solid-State Letters,1999,2:307. |
[11] | 米常焕,张校刚,曹高邵.锂离子电池负极合金CoSn和Cu-Sn的制备与表征[J].无机化学学报,2003(03):283-286. |
[12] | 黄令,江宏宏,柯福生,樊小勇,庄全超,杨防祖,孙世刚.新型三维网状锡-钴合金负极材料的结构与性能[J].物理化学学报,2006(12):1537-1541. |
[13] | Zhong ZY.;Gates B.;Xia YN.;Yin YD. .Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads[J].Advanced Materials,2000(3):206-209. |
[14] | Ke F S;Huang L;Wei H B et al.Fabrication and properties of macreporous tin-cobalt alloy film electrodes for lithium-ion batteries[J].Journal of Power Sources,2007,170:450-455. |
[15] | 索尼公司 .负极活性材料和使用该负极活性材料的电池[P].中国,200510128393.5,2005-09-30. |
[16] | 张敬君,夏永姚.Co-Sn合金作为锂离子电池负极材料的研究[J].高等学校化学学报,2006(10):1923-1926. |
[17] | 矫云超 .锂离子电池负极材料Sn基合金的制备与研究[D].哈尔滨工业大学,2006. |
[18] | Hassoun J;Mulas G;Panero S et al.Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy hall milling[J].Electrochemistry Communications,2007,9(08):207-208. |
[19] | Ortiz GF;Alcantara R;Rodriguez I;Tirado JL .New tin-based materials containing cobalt and carbon for lithium-ion batteries[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,2007(2):98-108. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%