分别添加不同含量的微米Al2O3(0.5~3μm)、微米Si3N4(O.3~3μm)和纳米Al2O3(13nm),利用共混法制备了具有不同导热性能的无机填料/硅橡胶复合材料。填料体积分数为30%时,通过改变微米Si3N4和纳米Al2O3体积比,发现微米Si3N4和纳米Al2O3共填充的硅橡胶复合材料的热导率较微米Si3N4/硅橡胶复合材料的热导率有显著提高,其中当微米Si3N4与纳米Al2O3体积比为26:4时,硅橡胶复合材料的热导率(1.64w/(m·K))约为单一微米Si3N4填充的硅橡胶复合材料热导率(O.52W/(m·K))的3倍。同时,微米Si3N4和纳米Al2O3共填充的硅橡胶复合材料有较高的击穿场强和优异的绝缘特性。
Filled with micro-Al2O3(0.5-3μm), micro- Si3N4 (0.3-3μm) and nano- A12Os, different thermal conductive silicone rubber composites were prepared by the blending method. Micro- Si3 N4 and nano Al2O3 according to different volume ratio were compounded with silicone rubber and the total volume fraction was fixed at 30%. It is found that with the same volume fraction, the thermal conductivity of all the micro-Si3N4 and nano- Al2O3 co-filled composites have remarkable improvement compared with that of the composite filled with micro- Si3N4. Especially, when the volume ratio of micro-Si3N4 to nano (1.64 W/(m K)) is three times as high as that of th the same time, the micro - Si3N4 and nano - Al2O3 co breakdown strength and excellent insulating properties.
参考文献
[1] | Xu Y S, Chung D D L, Morz C. Thermally conducting aluminum nitride polymer-matrix composites [J]. Composites Part A: Applied Science and Manufacturing, 2001, 32: 1749-1757. |
[2] | Zhou W Y, Yu D M, Wang C F, et al. Effect of filler size distribution on the mechanical and physical properties of alumina-filled silicone rubber [J]. Polymer Engineering and Science, 2008, 48(7): 1381-1388. |
[3] | Mu Q H, Feng S Y, Diao G Z. Thermal conductivity of silicone rubber filled with ZnO [J]. Polymer Composites, 2007: 125-130. |
[4] | Sim L C, Ramanan S R, Ismail H, et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes [J]. Thermochimica Acta, 2005, 430: 155-165. |
[5] | Zeng J, Fu R L, Shen Y, et al. High thermal conductive epoxy molding compound with thermal conductive pathway [J]. Journal of Applied Polymer Science, 2009, 113: 2117-2125. |
[6] | Leong C K, Chung D D L. Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance [J]. Carbon, 2003, 41: 2459-2469. |
[7] | Zhou W Y, Qi S H, Zhao H Z, et al. Thermally conductive silicone rubber reinforced with boron nitride particle [J]. Polymer Composites, 2007, 28(1): 23-28. |
[8] | 储九荣, 张晓辉, 徐传骧. 导热高分子材料的研究与应用 [J]. 高分子材料科学与工程, 2000, 16(4): 17-21. |
[9] | 潘大海, 刘 梅, 孟 岩, 等. 导热绝缘室温硫化硅橡胶的研制 [J]. 橡胶工业, 2004, 51: 534-536. |
[10] | 李侃社, 王 琪. 导热高分子材料研究进展 [J]. 功能材料, 2002, 33(2): 136-144. |
[11] | 周文英, 齐暑华, 涂春潮, 等. 绝缘导热高分子复合材料研究 [J]. 塑料工业, 2005, 33(S1): 99-102. |
[12] | 周文英, 李 勤, 齐暑华, 等. 复合型散热硅橡胶研究 [J]. 高分子材料科学与工程, 2007, 23(4): 242-245. |
[13] | 任 芳, 任鹏刚, 狄莹莹. 导热绝缘高分子复合材料的研究进展 [J]. 包装工程, 2009, 30(2): 122-124. |
[14] | 吕 勇, 罗世永, 许文才. 导热绝缘高分子复合材料中填料的研究进展 [J]. 北京印刷学院学报, 2008, 16(2): 76-78. |
[15] | 罗绍兵, 孙九立, 魏伯荣, 等. 硅橡胶的改性研究 [J]. 中国胶黏剂, 2007, 16(9): 50-53. |
[16] | 马传国, 容敏智, 章明秋. 导热高分子复合材料的研究与应用 [J]. 材料工程, 2002(7): 40-45. |
[17] | 丁 峰, 谢维章. 导热树脂基复合材料 [J]. 复合材料学报, 1993, 10(3): 19-24. |
[18] | Tanaka T. Nanocomposites-A review of electrical treeing and breakdown [J]. IEEE, 2009, 25(4): 19-25. |
[19] | 沈 源, 傅仁利, 何 洪, 等. 氮化硅/环氧复合电子基板材料制备及性能 [J]. 热固性树脂, 2007, 22(1): 16-18. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%