利用一种数值方法分析压电材料切口尖端包括奇异应力场和奇异电位移场在内的双重奇异性.基于切口尖端的位移场按幂级数渐近展开假设,从应力平衡方程和Maxwell方程出发,推导出关于压电材料切口奇性指数的特征方程组,同时将切口的力学和电学边界条件转化为奇性指数和特征函数的组合表达,从而将压电材料双重奇性分析问题转化为在相应边界条件下微分方程组的特征值求解问题,采用插值矩阵法,可以一次性地计算出压电材料切口的各阶奇性指数.裂纹作为切口的特例,其尖端的电弹性奇性指数亦可以根据本法求出.
参考文献
[1] | Xu J Q,Mutoh Y.Singularity at the interface edge of bonded transversely isotropic piezoelectric dissimilar materials[J].JSME International Journal Series A,2001,44:556-566. |
[2] | Chen C D.On the singularities of the thermo-electro-elastic fields near the apex of a piezoelectric bonded wedge[J].International Journal of Solids and Structures,2006,43:957-981. |
[3] | 王海涛,佘锦炎,双压电材料界面力电耦合场奇异性研究[J].工程力学,2006,23(1):165-171.Wang Haitao,She Jinyan.On the singularities of electromechanical fields at the interfaces of bimorph[J].Engineering Mechanics,2006,23(1):165-171. |
[4] | Nam B G,Tsuchida S,Watanabe K.Fatigue crack growth driven by electric fields in piezoelectric ceramics and its governing fracture parameters[J].International Journal of Engineering Science,2008,46:397-410. |
[5] | Artel J,Becker W.Coupled and uncoupled analyses of piezoelectric free-edge effect in laminated plates[J].Composite Structures,2005,69:329-335. |
[6] | Li Q,Chen Y H.Analysis of crack-tip singularities for an interfacial permeable crack in metal/piezoelectric bimaterials[J].Acta Mechanica Solida Sinica,2007,20(3):247-257. |
[7] | 袁泽帅,郭俊宏,卢子兴.压电复合材料中幂函数型曲线裂纹的反平面问题[J].复合材料学报,2012,29(1):136-143.Yuan Zeshuai,Guo Junhong,Lu Zixing.Anti-plane analysis of power function curved cracks in piezoelectric composites[J].Acta Materiae Compositae Sinica,2012,29(1):136-143. |
[8] | 杨丽敏,柳春图,曾晓辉.压电材料平面问题的尖端场和应力强度因子的求解[J].应用力学学报,2005,22(2):212-216.Yang Limin,Liu Chuntu,Zeng Xiaohui.Crack tip field and stress intensity factors in planar piezoelectric problem[J].Chinese Journal of Applied Mechanics,2005,22 (2):212-216. |
[9] | 马鹏,冯文杰,靳静.压电压磁双层材料界面二维裂纹分析[J].工程力学,2011,28(6):163-169.Ma Peng,Feng Wenjie,Jin Jing.Two dimensional interfacial cracks analysis between piezoelectric and piezomagnetic layers[J].Engineering Mechanics,2011,28(6):163-169. |
[10] | Zhou Z H,Xu X S,Leung A Y T.The mode Ⅲ stress/electric intensity factors and singularities analysis for edge-cracked circular piezoelectric shafts[J].International Journal of Solids and Structures,2009,46:3577-3586. |
[11] | Wippler K,Kuna M.Crack analyses in three-dimensional piezoelectric structures by the BEM[J].Computational Materials Science,2007,39:261-266. |
[12] | GuoJ H,LuZX,HanHT,etal.The behavior of two nonsymmetrical permeable cracks emanating from an elliptical hole in a piezoelectric solid[J].European Journal of Mechanics A/Solids,2010,29:654-663. |
[13] | Guo J H,Lu Z X,Han H T,et al.Exact solutions for antiplane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material[J].International Journal of Solids and Structures,2009,46:3799-3809. |
[14] | Chen M C,Zhu J J,Sze K Y.Electroelastic singularities in piezoelectric-elastic wedges and junctions[J].Engineering Fracture Mechanics,2006,73:855-868. |
[15] | 杨新华,冯伟干,陈传尧.压电薄板切口尖端前沿力电损伤场分析[J].应用力学学报,2006,23(1):21-24.Yang Xinhua,Feng Weigan,Chen Chuanyao.Mechanical and electrical damage ahead of notch tip in thin piezoelectric plate[J].Chinese Journal of Applied Mechanics,2006,23(1):21-24. |
[16] | 姚伟岸,杨柳.压电材料三维问题的虚边界元一最小二乘配点法[J].计算力学学报,2007,24(6):779-783.Yao Weian,Yang Liu.Virtual boundary element-least square collocation method for three dimensional piezoelectric materials[J].Chinese Journal of Computational Mechanics,2007,24(6):779-783. |
[17] | Shen M H,Chen F M,Chen S N.Piezoelectric study on singularities interacting with interfaces in an anisotropic media[J].International Journal of Solids and Structures,2007,44:5598-5610. |
[18] | Zhang T Y,Liu G N,Wang Y.Failure behavior and failure criterion of conductive cracks (deep notches) in piezoelectric ceramics Ⅱ:Experimental verification[J].Acta Materialia,2004,52:2025-2035. |
[19] | Xu X L,Rajapakse R K N D.On singularities in composite piezoelectric wedges and junctions[J].International Journal of Solids and Structures,2000,37:3253-3275. |
[20] | 牛忠荣,葛大丽,程长征,等.插值矩阵法分析双材料平面V形切口奇异阶[J].计算力学学报,2009,26(6):893-899.Niu Zhongrong,Ge Dali,Cheng Changzheng,et al.Analysis of the stress singularity of plane bimaterial V-notches with interpolating matrix method[J].Chinese Journal of Computational Mechanics,2009,26(6):893-899. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%