欢迎登录材料期刊网

材料期刊网

高级检索

简要介绍了染料敏化太阳能电池(简称DSSC)的结构和工作原理;综述和讨论了近年来TiO2阳极的改性技术,包括半导体复合、梯度掺杂、过渡金属离子掺杂、贵金属沉积、表面修饰以及紫外光照射改性等方面国内外研究的进展;并对染料敏化太阳能电池的应用前景和今后研究工作的重点进行了论述.

参考文献

[1] Michael Gr(a)zel .Dye-sensitized solar cells[J].J Photochemistry and Photobiology,2003,4:145.
[2] Michael Gratzel .Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight[J].Chemistry Letters,2005(1):8-13.
[3] Bandara J;Tennakone K .Interparticle charge transfer in dye-sensitized films composed of two kinds of semiconductor crystallites[J].J Colloid and Interf Sci,2001,236:37.
[4] Martin CM;Burlakov VM;Assender HE .Modeling charge transport in composite solar cells[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2006(7/8):900-915.
[5] Bandara J;Kuruppu SS;Pradeep UW .The promoting effect of MgO layer in sensitized photodegradation of colorants on TiO2/MgO composite oxide[J].Colloids and Surfaces, A. Physicochemical and Engineering Aspects,2006(1/3):197-202.
[6] Keishi N;Toshio Tsuchiya .Electrochromic thin films prepared by sol-gel process[J].Solar Energy Materials and Solar Cells,2001,68(03):279.
[7] Tennakone K;Jayaweera P V V;Bandaranayake P K M .Dye-sensitized photoelectroche--mical and solid-state solar cells:charge separation,transport and recombination mechanisms[J].Journal of Photochemistry and Photobiology A:Chemistry,2003,158:125.
[8] 孔凡太,戴松元,王孔嘉.染料敏化纳米薄膜太阳电池中的染料敏化剂[J].化学通报(印刷版),2005(05):338-345.
[9] 陈章其,林云,倪明生.FeS2/TiO2复合膜的制备及光伏特性的研究[J].太阳能学报,1999(02):171-177.
[10] 孟亮,黄伟,刘艳辉.Fe膜硫化合成FeS2薄膜的光电性能[J].太阳能学报,2002(03):308-312.
[11] 刘超,杨良准,杜立芬,余锡宾,吴振华.不同金属离子掺杂TiO2薄膜的制备及光催化活性的研究[J].工业催化,2006(01):56-60.
[12] Vogel R;Hoger P;Weller H .Quantum-sized PbS,CdS,Ag2S,Sb2S3 and Bi2S3 particles as sensitizers for variousnanoporous wide-bandage semiconductor[J].Physical Chemistry,1994,98(12):3183.
[13] 吴凤霞,殷海荣,杨勇,王水庆.CdS敏化TiO2薄膜的制备和光电转换性质的研究[J].佛山陶瓷,2001(06):10-12.
[14] Bedja I;Kanmat P V .Capped semiconductor colloids:synthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallites[J].Journal of Physical Chemistry,1995,99:9182.
[15] 王艳芹,程虎民,马季铭.二氧化钛和三氧化二铁复合纳米晶电极的光电化学性质[J].物理化学学报,1999(03):222-227.
[16] Kirthi Tennakone;Jayasundara Bandara;Priyangi Konara Mudiyanselage Bandaranayake;Gamaralalage Rajanya Asoka Kumara;Akinori Konno .Enhanced Efficiency of a Dye-Sensitized Solar Cell Made from MgO-Coated Nanocrystalline SnO_2[J].Japanese journal of applied physics,2001(7B Pt.2):L732-L734.
[17] Menziesa D;Dai Q .Improvement of the zirconia shell in nanostructured titania core-shell working electrodes for dyesensitized solar cells[J].Materials Letters,2005,59:1893.
[18] Seok-Soon Kim;Jun-Ho Yum;Yung-Eun Sung .Flexible dyesensitized solar cells using ZnO coated TiO2 particles[J].Journal of Photochemistry and Photobiology A:Chemistry,2005,171:269.
[19] 黄春晖;李富友;黄岩谊.光电功能超薄膜[M].北京:北京大学出版社,2004:400.
[20] Kumara G R A;Okuya M;Murakami K et al.Dye-sensitized solid-state solar cells made from magnesiumoxide-coated manocrys-talline titanium dioxide films:enhancement of the efficiency[J].CHEMISTRY,2004,164:183.
[21] 王爱坤,周国香,杨韧,李国昌.梯度掺杂对太阳能电池转换效率的影响[J].半导体技术,2003(09):63-64,78.
[22] 叶波,李庆余,赵恒勤.梯度功能材料制备方法研究现状与展望[J].矿产保护与利用,2004(04):47-51.
[23] 赵高凌,宋斌,韩高荣,幸塚广光,横尾俊信.禁带宽度梯度化的半导体薄膜光电极的研究[J].科学通报,2001(01):28-30.
[24] 赵高凌,施永明,叶宏伟,韩高荣.Ti1-xVxO2薄膜的制备及光电性能[J].材料研究学报,2002(01):51-54.
[25] 郝三存,吴季怀,黄昀昉,范乐庆.染料敏化纳米晶TiO2太阳能电池研究进展[J].材料导报,2003(07):35-38.
[26] 刘志强,李先国,冯丽娟.二氧化钛薄膜的改性技术研究进展[J].表面技术,2006(01):9-11,43.
[27] Wang Y Q;Hao Y Z;Cheng H M et al.Photoelectrochemistry of transition metal ion doped TiO2 nanocrystalline electrodes and higher solar cell conversion effiency base on Zn2+ doped TiO2 electrodes[J].Journal of Materials Science,1999,34(02):1.
[28] 张敬波;林原;肖绪瑞 .强度调制光电流谱研究纳晶CdSe薄膜电极的界面电荷转移过程[J].物理化学学报,2001,17(10):918.
[29] Xie Z;Henry BM;Kirov KR;Smith HE;Barkhouse A;Grovenor CRM;Assender HE;Briggs GAD;Webster GR;Burn PL .Study of the effect of changing the microstructure of titania layers on composite solar cell performance[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2006(0):523-528.
[30] 王静,赵珊,池勇志,费学宁.TiO2光催化剂改性技术研究新进展[J].天津城市建设学院学报,2006(02):116-119,127.
[31] Zhao G L;Kozuka H Yoko .Photoelectrochemical properties of dye-sensitized TiO2 film containing dispersed gold metal particles prepared by sol-gel method[J].Journal of the Ceramic Society of Japan,1996,104:164.
[32] 杨华,袁坚,赵兹君.TiO2半导体薄膜电极的光电转换性能研究[J].硅酸盐通报,2004(01):62-66,80.
[33] Kay A;Humphry-Baker R;Gratzel M .Artificial photosynthesis 2 investigation on the mechanism of photosensitization of nanocrystalline TiO2 solar cell by chlorophyll perivatives[J].Journal of Physical Chemistry,1994,98(03):952.
[34] 柳闽生.纳米尺度TiO2/聚吡咯多孔膜电极光电化学研究[J].高等学校化学学报,1997(06):938.
[35] Brian A Gregg;Chen Siguang;Suzanne Ferrere .Enhanced dye-sensitized photoconversion efficiency via reversible production of UV-induced surface states in nanoporous TiO2[J].Journal of Physical Chemistry B,2003,107:3019.
[36] Suzanne Ferrere;Brian A. Gregg .Large Increases in Photocurrents and Solar Conversion Efficiencies by UV Illumination of Dye Sensitized Solar Cells[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2001(32):7602-7605.
[37] Larry N Lewis;James L Spivack .A novel UV-mediated low-temperature sintering of TiO2 for dye-sensitized solar cells[J].Solar Energy Materials and Solar Cells,2006,90:1041.
[38] 林红,李建保.日本染料敏化太阳能电池最新研究动向[J].世界科技研究与发展,2004(05):5-9.
[39] Koelsch M.;Cassaignon S.;Guillemoles JF.;Jolivet JR. .Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol-gel method[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2002(0):312-319.
[40] Anneke Hauch;Andreas Georg .Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells[J].Electrochimica Acta,2001(22):3457-3466.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%