欢迎登录材料期刊网

材料期刊网

高级检索

对双轴向经编织物T700/双马来酰亚胺树脂(BMI)6421复合材料进行了弯曲性能和层间剪切性能测试,以同状态无经编线的单向布T700/BM16421复合材料作对比,分析了经编织物T700/BM16421复合材料的力学特性,采用微观金相、SEM分析了经编线引起的纤维层内部结构变化。结果表明,引入经编线导致纤维束面内排列产生扰动,降低了复合材料的弯曲性能,45°方向上弯曲模量下降约26%;经编线的绑缚使纤维层结合更加紧密,提高了层间剪切性能,0°方向上层间剪切强度提高约13%。证实了复合材料液体成型工艺中,经编织物可替代单向布等传统预成型体。

Comparing with the unidirectional(UD) cloth TT00/bismaleimide(BMI)6421 composite, mechanical properties of warp-knitted fabric T700/BMI6421 composite were studied. Bending properties and interlaminar shear properties of warp-knitted fabric T700/BMI6421 composite were tested. The variety in fabric structure caused by warp-knitted thread were demonstrated with metallographic microscope and SEM images. It is shown fiber distortions caused by warp-knitted thread decrease the bending performance. The bending modulus is 26% lower than the unidirectional cloth reinforced composite in the 45° direction. The interlaminar shear performance is improved by stitching structure which make the fiber layer tighter. The interlaminar shear strength(ILSS) is about 13% higher than the unidirectional cloth reinforced composite in the 0° direction. It is confirmed that traditional unidirectional cloth could be replaced by warp-knitted fabric in liquid composite molding process.

参考文献

[1] Harris H, Schinsks N. Multiaxial stitched perform reinforcements for RTM fabrication //Stinson J, Adsit R. How concept becomes reality: 36th International SAMPE Symposium & Exhibition. San Diego: Society for Advancement of Material and Process Egineering, 1991: 521-531.
[2] 罗永康. 经编复合材料及其应用 [J]. 航天工艺, 1999, 4(2): 31-36.
[3] 周荣星, 陈明珍. 经编多轴向技术及其在复合材料中的应用 [J]. 武汉纺织工学院学报, 1999, 12(3): 81-85.
[4] Ustunel U. Modern multiaxials improve performance [J]. Reinforced Plastics, 2006, 4: 34-38.
[5] 卢子兴, 冯志海. 编织复合材料拉伸力学性能的研究 [J]. 复合材料学报, 1999, 16(1): 129-134.
[6] 董 韵, 李 炜. 经编多轴向织物 [J]. 玻璃钢/复合材料, 2006(1): 56-57.
[7] Lomov S V, Barburski M, Stoilova T, et al. Carbon composites based on multiaxial multiply stitched performs: Part 3—Biaxial tension, picture frame and compression tests of the performs [J]. Composites Part A, 2005, 36: 1188-1206.
[8] Du G W, Ko F K. Analysis of multiaxial warp-knit performs for composite reinforcement [J]. Composites Science and Technology, 1996, 56: 253-260.
[9] Dransfleld K, Baillie C, Mai Y W. Improving the delamination resistance of CFRP by stitching—A review [J]. Compos Sci Technol, 1994, 50: 305-317.
[10] Dransfleld K, Jain L, Mai Y W. On the effects of stitching in CFRPs Ⅰ: ModeⅠdelamination toughness [J]. Compos Sci Technol, 1998, 58: 815-827.
[11] Lomov S V, Vepoest I, Barburski M, et al. Carbon composites based on multiaxial multiply stitched performs: Part 2—KES-F characterization of the deformability of the performs at low loads [J]. Composites Part A, 2003, 34: 359-370.
[12] Vallons K, Zong M, Lomov S V, et al. Carbon composites based on multiaxial multiply stitched performs: Part 6—Fatigue behaviour at low loads: Stiffness degradation and damage development [J]. Composites Part A, 2007, 38: 1633-1645..
[13] Truong T C, Ivanov D S, Klimshin D V, et al. Carbon composites based on multiaxial multiply stitched performs: Part 7—Mechanical properties and damage observations in composites with sheared reinforcement [J]. Composites Part A, 2008, 39: 1380-1393.
[14] Vallons K, Lomov S V, Verpoest I. Fatigue and post-fatigue behaviour of carbon/epoxy non-crimp fabric composites [J]. Composites Part A, 2009, 40: 251-259.
[15] 王汝敏, 郑水蓉, 郑亚萍. 聚合物基复合材料及工艺 [M]. 北京: 科学出版社, 2004.
[16] Joffer R, Mattsson D, Modniks J, et al. Compressive failure analysis of non-crimp composites with large out-of-plane misalignment of fiber bundles [J]. Composites Part A, 2005, 36: 1030-1046.
[17] Mattsson D, Joffe R, Varan J. Methodology for characterization of internal structure parameters governing performance in NCF composites [J]. Composites Part B, 2007, 38: 44-57.
[18] Gonzalez A, Graciani E, Paris F.Prediction of in-plane stiffness properties of non-crimp fabric laminates by means of 3D finite element analysis [J]. Compos Sci Technol, 2008, 68: 121-131.
[19] Joffe R, Mattsson D, Modniks J, et al. Compressive failure analysis of non-crimp fabric composites with large out-of-plane misalignment of fiber bundles [J]. Composites Part A, 2005, 36: 1030-1046.
[20] Drapier S, Wisnom M R. A finite-element investigation of the interlaminar shear behavior of non-crimp1fabric-based composites [J]. Compos Sci Technol, 1999, 59: 2351-2362.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%