欢迎登录材料期刊网

材料期刊网

高级检索

采用搅拌辅助低温(半固态区间)钎焊技术,制备低银无铅钎料和纳米复合钎料钎焊接头。结果表明:240℃时复合钎料的润湿时间较基体的润湿时间缩短了31%,润湿力较基体的提高了3.8%;机械搅拌在破碎树枝晶和加速元素扩散的同时,降低了液相的温度梯度和成分过冷,大大削弱了钎料基体中金属间化合物(IMC)Cu6Sn5的枝晶生长,促使针状Cu6Sn5破碎呈短棒状;在低银无铅钎料中加入纳米Ni颗粒,Ni与Cu6Sn5生成孔洞状化合物(CuxNi1?x)6Sn5及低温搅拌形成的气孔成为界面原子的扩散通道。搅拌形成的紊流和热流传递加快了原子的溶解与扩散,加速了界面IMC的生长。

The soldering joints of low silver solder and nano-particle lead-free Sn-Cu-Ag composite solder were prepared by the technology of low-temperature soldering (at semi-solid state) with stirring, respectively. The results show that the wetting time of nano-particle composite solder is decreased by 31% at 240 ℃, and the wetting power is increased by 3.8%compared those of with the matrix. Mechanical mixing can break dendrites and accelerate the diffusion of elements, and also reduce the temperature gradient and the composition undercooling of the liquid, thus, greatly weaken the growth of IMC-Cu6Sn5 dendrite in solder matrix and making needle-shaped intermetallic compound (IMC) Cu6Sn5 break into short rod-like. After adding nano-Ni particles into the low silver solder, cavitary compounds of (CuxNi1?x) 6 Sn5 generated by Ni with Cu6Sn5 and the porosities formed by stirring at low temperature are as the diffusion path of interface atoms. The turbulent flow and heat flow due to stirring accelerate the dissolution and diffusion of the atom, and speed up the growth of IMC.

参考文献

[1] 许天旱,赵麦群,刘新华.Sn-Ag-Cu系无铅焊锡成分的优化研究[J].电子元件与材料,2004(08):14-16,21.
[2] 张曙光,何礼君,张少明,石力开.绿色无铅电子焊料的研究与应用进展[J].材料导报,2004(06):72-75.
[3] Jun Shen;Changfei Peng;Heng Gang Yin;Jie Chen .Influence of minor POSS molecules additions on the microstructure and hardness of Sn3Ag0.5Cu-xPOSS composite solders[J].Journal of Materials Science. Materials in Electronics,2012(9):1640-1646.
[4] S. Y. Chang;L. C. Tsao;M. W. Wu;C. W. Chen .The morphology and kinetic evolution of intermetallic compounds at Sn-Ag-Cu solder/Cu and Sn-Ag-Cu-0.5Al_(2)O_(3) composite solder/Cu interface during soldering reaction[J].Journal of Materials Science. Materials in Electronics,2012(1):100-107.
[5] JAE-MYEONG KIM;MYEONG-HYEOK JEONG;SEHOON YOO;YOUNG-BAE PARK .Effects of Surface Finishes and Current Stressing on Interfacial Reaction Characteristics of Sn-3.0Ag-0.5Cu Solder Bumps[J].Journal of Electronic Materials,2012(4):791-799.
[6] Mingna Wang;Jianqiu Wang;Hao Feng;Wei Ke .Effects of microstructure and temperature on corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder[J].Journal of Materials Science. Materials in Electronics,2012(1):148-155.
[7] HUANG Z;KUMAR P;DUTTA I;PANG J H L, SIDHU R,RENAVIKAR M,MAHAJAN R .Fracture of Sn-Ag-Cu solder joints on Cu substrates:Ⅰ. Effects of loading and processing conditions[J].Journal of Electronic Materials,2012,41(02):375-389.
[8] 周迎春,潘清林,李文斌,梁文杰,何运斌,李运春,路聪阁.La对Sn-Ag-Cu无铅钎料与铜钎焊接头金属间化合物的影响[J].中国有色金属学报,2008(09):1651-1657.
[9] 韩永典,荆洪阳,徐连勇,郭伟杰,王忠星.Sn-Ag-Cu无铅焊料的可靠性研究[J].电子与封装,2007(03):4-6,33.
[10] Han-Byul Kang;Jee-Hwan Bae;Jae-Wook Lee .Control of interfacial reaction layers formed in Sn-3.5Ag-0.7Cu/electroless Ni-P solder joints[J].Scripta materialia,2009(4):257-260.
[11] 徐金华,吴佳佳,陈胜,马鑫.低银Sn-Ag-Cu无铅钎料的性能研究[J].电子工艺技术,2010(03):141-143,157.
[12] 杜长华;陈方.电子微连接技术与材料[M].北京:机械工业出版社,2008
[13] 邵光杰;王锐;董红星;王艳芝.物理化学[M].哈尔滨:哈尔滨工业大学出版社,2008
[14] TSAO L C;WANG B C;CHANG C W;WU M W.Effect of nano-TiO2 addition on wettability and interfacial reactions of Sn0.7Cu composite solder/Cu solder joints[A].Taibei,2010
[15] DU C H;LI Z K;LIU B;LI C T .The frontier analysis of RCS for micro-nano particle[J].Advanced Materials Research,2010,337:526-531.
[16] Fu Guo .Composite lead-free electronic solders[J].Journal of Materials Science. Materials in Electronics,2007(1/3):129-145.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%