欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble-1500热模拟机在变形温度为1 000~1 150 ℃、应变速率为10~(-3)~10~0 s~(-1)的变形条件下,研究Ti-47Al-2Cr-0.2Mo(摩尔分数,%)合金的热变形行为.利用光学显微镜和扫描电子显微镜分析合金在不同变形条件下的组织演化规律.结果表明:流变应力随着应变速率提高和变形温度降低而增大;在变形过程中,流变应力随着变形量增大而增大,当流变应力达到峰值后趋于平稳,表明合金在变形过程中发生了动态再结晶;热变形过程的流变应力可采用双曲正弦本构关系来描述,平均激活能为337.75 kJ/mol;从合金的组织演化过程中可以看出,合金中不均匀的原始组织得到明显均匀化,变形后的组织是由α_2/γ层片晶团和γ晶粒组成的双态组织,在α_2/γ层片晶团和γ晶粒的晶界交界处发现分布均匀的B_2相,并且随着变形温度升高B_2相数量逐渐减少.

The hot deformation behaviors of the Ti-47Al-2Cr-0.2Mo (mole fraction, %) alloy were studied with a Gleeble-1500 machine at 1 000-1 150 ℃ with the strain rate of 10-3-100 s-1. The microstructural evolution of the alloy was investigated by optical microscopy and scanning electron microscopy. The results indicate that the flow stress of the alloy increases with increasing strain rate and decreasing deformation temperature. The flow stress increases with increasing strain until the stress reaches the peak value, then the flow stress remains constant, which indicates that dynamic recrystallization happens during deformation. The flow behaviors are described by the hyperbolic sine constitutive equation, and the activation energy calculated is 337.75 kJ/mol. The as-forged microstructure consists of refined α_2/γ and γ grains, and the grains are much homogeneous than before. The B_2 phase distributes uniformly at the grain boundary of α_2/γ and γ grains. The B_2 phase decreases with increasing deformation temperature.

参考文献

[1] 张俊红,黄伯云,贺跃辉,周科朝,唐建成.TiAl基合金板材制备技术的发展现状[J].材料导报,2002(02):16-18,53.
[2] Marcel Roth;Horst Biermann .Thermo-mechanical fatigue behaviour of a modern γ-TiAl alloy[J].International Journal of Fatigue,2008(2):352-356.
[3] Alain Couret;Guy Molenat;Jean Galy .Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering[J].Intermetallics,2008(9):1134-1141.
[4] S. Bystrzanowski;A. Bartels;H. Clemens .Characteristics of the tensile flow behavior of Ti-46Al-9Nb sheet material - Analysis of thermally activated processes of plastic deformation[J].Intermetallics,2008(5):717-726.
[5] Y.H. Wang;J.P. Lin;XJ. Xu .Effect of fabrication process on microstructure of high Nb containing TiAl alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2008(1/2):313-317.
[6] Xu XJ;Lin JP;Wang YL;Lin Z;Chen GL .Deformability and microstructure transformation of pilot ingot of Ti-45Al-(8-9)Nb-(W,B,Y) alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):98-103.
[7] Kim JH.;Shin DH.;Semiatin SL.;Lee CS. .High temperature deformation behavior of a gamma TiAl alloy determined using the load-relaxation test[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):146-157.
[8] 张俊红,黄伯云,贺跃辉,孟力平.TiAl基合金低温超塑性变形的力学行为[J].中国有色金属学报,2003(02):442-447.
[9] 黄劲松,黄岚,刘彬,张永红,刘咏,贺跃辉,黄伯云.TiAl合金的热压缩模拟[J].稀有金属,2007(02):154-159.
[10] 徐丽华,徐向俊,林均品,王艳丽,宋西平,林志,陈国良,李树索,苏喜孔,韩雅芳.包套锻造对高Nb-TiAl基合金组织的影响[J].材料工程,2004(08):21-24.
[11] 李宝辉,陈玉勇,孔涛.Ti-45Al-5Nb-0.3Y合金的等温热变形模拟及包套锻造[J].航空材料学报,2007(03):42-46.
[12] 王蕊宁,奚正平,赵永庆,戚运连,杜宇.Zr-4合金的热变形和加工图[J].稀有金属材料与工程,2007(05):808-812.
[13] Balasubrahmanyam VV.;Prasad YVRK. .Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):150-158.
[14] S. LI;X. SU;Y. HAN .Simulation of hot deformation of TiAl based alloy containing high Nb[J].Intermetallics,2005(3/4):323-328.
[15] 贺跃辉;黄伯云 .包套锻复合热机械处理技术中TiAl基合金显微组织细化的机理[J].中南工业大学学报(自然科学版),1997,28(04):355-358.
[16] 张俊红,黄伯云,贺跃辉,周科朝,孟力平.Physical simulation of hot deformation of TiAl based alloy[J].中南工业大学学报(英文版),2002(02):73-76.
[17] 张俊红,黄伯云,周科朝,李志友,何双珍,刘咏,贺跃辉.包套轧制制备TiAl基合金板材[J].中国有色金属学报,2001(06):1055-1058.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%