欢迎登录材料期刊网

材料期刊网

高级检索

结合纯金属单原子(OA)理论和Debye-Gruneisen模型, 采用CALPHAD方法确定的 晶格稳定参数, 研究了SGTE纯单质数据库中fcc-, hcp--和bcc- Cu的原子状态 及物理性质(原子势能、原子动能、原子体积、体弹性模量和热膨胀系数等)随 温度的变化关系. 结果表明: 电子结构计算结果与第一原理方法非常接近. 3种 晶体结构的电子结构差别不大, 单键半径非常接近. 原子体积顺序为: Va(bcc)>Va(hcp)>Va(fcc); 共价电子浓度 顺序为: nc(fcc)>nc(hcp)>nc(bcc); 原子 势能大小顺序为: εp(fcc)<εp(hcp)<εp(bcc); 晶格稳定性顺序为: δG(fcc)>δG(hcp)>δG(bcc). 原子 动能随温度的增加幅度约为势能的3-4倍.

Combining the One-Atom (OA) theory with Debye-Gruneisen model, adopting the lattice stability parameters determined by CALPHAD method, the temperature dependences of the atom states, atomic potentials and vibrating energies, atomic volumes, bulk moduli and linear thermal expansion coefficients of fcc- and metastable hcp- and bcc-Cu metals in SGTE database of pure elements have been studied, and the results show that the calculated electronic structure is accordant with that of first principles; the electronic structures of fcc-, hcp- and bcc-Cu are very close and the single bond radii of them are very close as well; the order of atomic volumes of them is Va(bcc)>Va(hcp)>Va(fcc), that of concentration of covalent electrons is nc(fcc)>nc (hcp)>nc(bcc), that of atomic potential energies is εp(fcc)<εp(hcp)<εp(bcc), and so the lattice stability is δG(fcc)>δG(hcp)>δG(bcc); the increasing amplitude of atomic vibrating energy is 2 to 3 times higher than that of potential energy during the elevation of temperature.

参考文献

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%