欢迎登录材料期刊网

材料期刊网

高级检索

采用分离式霍布金森(SHPB)压杆装置进行2519A-T87铝合金动态压缩试验,获得温度T为293、423、573、723 K,名义应变速率为(1250±100)、(2400±100)、(5600±220)、(7050±100) s-1条件下2519A铝合金动态屈服应力σs-T关系曲线,并利用TEM对293和723 K 2个温度条件下压缩试样中析出相演变进行显微组织观察.分析研究了不同条件下T对试样σs和微观组织的影响规律.结果表明:在573 K, 5610 s-1下2519A铝合金经受高应变速率冲击后组织中出现明显的绝热剪切带组织.由于2519A铝合金材料具有动态应变时效特性,导致Portevin-Le Chatelier效应产生.当加载T一定时, 越高,冲击后材料内部位错密度越高,致使σs越高;当加载一定时,加载T越高,材料软化效应越明显,σs下降越显著.高条件下,材料的显微组织产生显著变化,θ'析出相增厚效应严重,在723 K下为5380 s-1冲击时,θ'析出相部分会转变为长方体状相;当达到6950 s-1时,θ'析出相完全转变为不共格相.

参考文献

[1] 李慧中,张新明,陈明安,周卓平.2519铝合金热变形流变行为[J].中国有色金属学报,2005(04):621-625.
[2] Meng H et al.[J].International Journal of Impact Engineering,2003,28(05):537.
[3] Li Qiang;Xu Yongbo;M. N. Bassim .Dynamic mechanical properties in relation to adiabatic shear band formation in titanium alloy-Ti17[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):128-133.
[4] Lee O S et al.[J].Nuclear Engineering and Design,2003,226:119.
[5] Deshpande V S et al.[J].International Journal of Impact Engineering,2000,24:277.
[6] Albert D E et al.[J].Acta Materialia,1997,45(01):343.
[7] Yia Feng et al.[J].Materials Characterization,2001,47:417.
[8] Al-Mousawi M M et al.[J].Journal of Mechanical Engineering Science,1997,211:273.
[9] Ziegenbein A.;Neuhauser H.;Hahner P. .Propagating Portevin-LeChatelier deformation bands in Cu-15 at.% Al polycrystals: experiments and theoretical description[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(0):336-339.
[10] Kovács Z S et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2002,325:255.
[11] Draheim K J et al.[J].Computational Materials Science,1996,5:67.
[12] 彭开萍,陈文哲,钱匡武.3004铝合金动态应变时效的微观机理[J].材料热处理学报,2005(06):57-61.
[13] Schwink Ch.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1997(234-236):l.
[14] Weaver M L.[J].Intermetallics,1996(04):593.
[15] Bross S et al.[J].Computational Materials Science,2003,26:46.
[16] Hong Seonggu et al.[J].Journal of Nuclear Materials,2004,328:232.
[17] Fressengeas C.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2005(400-401):226.
[18] 钱匡武,李效琦,萧林钢,陈文哲,张好国,彭开萍.金属和合金中的动态应变时效现象[J].福州大学学报(自然科学版),2001(06):8-23.
[19] Hong Seonggu et al.[J].Journal of Nuclear Materials,2005,340:307.
[20] 郭大浩,吴鸿兴,王声波,洪昕,王劼,戴宇生,夏小平,张永康,张宏,唐亚新,余承业.激光冲击强化机理研究[J].中国科学(E辑),1999(03):222-226.
[21] Cheng J.;Nasser S. N.- .A MODEL FOR EXPERIMENTALLY-OBSERVED HIGH-STRAIN-RATE DYNAMIC STRAIN AGING IN TITANIUM[J].Acta materialia,2000(12):3131-3144.
[22] Li D Y et al.[J].Acta Materialia,1998,46(08):2573.
[23] Ovono Ovono D et al.[J].Journal of Alloys and Compounds,2007,432:241.
[24] Lumley R N et al.[J].Scripta Materialia,2004,50:1227.
[25] Hu S Y et al.[J].Acta Materialia,2006,54:4699.
[26] 刘刚,丁向东,孙军,陈康华.具有盘状析出相铝合金的时效强化模型[J].中国有色金属学报,2001(03):337-347.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%