采用注塑工艺制备剑麻纤维增强聚丙烯复合材料,研究纤维含量、长度及其分布、不同基体树脂和相容剂类型等对复合材料冲击性能的影响.分析单纤维强度的分散性,采用修正的Weibull分布模型估算临界纤维强度,并对复合材料的冲击强度进行预测.结果表明:剑麻/聚丙烯的冲击强度随纤维含量增加而升高,树脂基体的性质对冲击强度具有显著的作用;界面层为刚性层的相容剂MAPP对冲击强度具有负作用,而界面层为柔性层的相容剂PP-g-GMA对冲击强度具有提高作用;同等含量下,使用PP-g-GMA后复合材料的冲击强度比使用MAPP提高21.7%.通过KH550硅烷溶液处理后的纤维与PP-g-GMA反应,在界面处引入更加柔性的界面层,使冲击强度比引入MAPP提高50.7%.将纤维取向因子引入冲击强度模型后,预测值与实测值符合较好.
The sisal fiber(SF)reinforced polypropylene composites were manufactured by injection molding.The effects of fiber content,fiber length distribution,matrix types and compatibilizer types on the impact strength of the composites were studied.The distribution of individual fiber tensile strength was analyzed.The tensile strength of fibers at the critical fiber length was estimated by the modified Weibull distribution model.The impact strength of the composites was predicted.The results show that the impact strength increases with the fiber content.The matrix types have important influence on the impact strength.Owing to forming a rigid interfacial layer between the matrix and fiber.the MAPP compatibilizer has a negative influence on the impact strength,while the PP-g-GMA compatibilizer has a positive influence on the impact strength owing to forming a soft interfacial layer.The impact strength of the composite with PP-g-GMA is 21.7%higher than with MAPP at the same compatibilizer content.When the softer interfacial layer is introduced through the reactions of the natural fiber treated by KH550 silane with PP-g-GMA compatibilizer.the impact strength is 50.7%higher than that with MAPP.The predicted and the experimental values are reasonably well approximated considering the fiber orientation factor to the impact strength model.
参考文献
[1] | 鲁博,张林文,曾竞成.天然纤维复合材料[M].北京:化学工业出版杜,2005:451-463. |
[2] | Thomason J L,Vlug M A.Influence of fibre length and concentration on the properties of glass-reinforced polypropylene IV:Impact properties[J].Composites Part A:Applied Science and Manufacturing,1997,28(3):277-288. |
[3] | Norman D A,Robertson R E.The effect of fiber orientation on the toughening of short fiber-reinforced polymers[J].Journal of Applied Polymer Science,2003,90(10):2740-2751. |
[4] | Pavithran C,Mukherjee P S,Brahmakumar M,et al.Impact properties of natural fibre composites[J].Journal of Materials Science Letters,1987,6(8):882-884. |
[5] | 卢珣,章明秋,容敏智,等.剑麻纤维增强聚合物基复合材料[J].复合材料学报,2002,19(5):1-6.Lu Xun,Zhang Mingqiu,Rong Minzhi,et al.Sisal reinforced polymer composites[J].Acta Materiae Compositae Sinica,2002.19(5):1-6. |
[6] | Cottrell A H.Strong solids[C]//Berry M.Proceedings of the Royal Society of London,Series A:Mathematical and Physical Sciences.London:Royal Society Publishing,1964:2-9. |
[7] | Mieck K P.Reu(B)mann T,Lutzkendorf R.Calculations and experiments for impact strength of natural long-fiberreinforced composites[J].Advanced Engineering Materials,2004,6(3):144-147. |
[8] | 潘泳康,阮吉敏,周达飞.GMA熔融接枝聚丙烯的研究[J].华东理工大学学报,1997,23(2):204-209.Pan Yongkang,Ruan Jimin,Zhou Dafei.Investigation on melt grafting of GMA onto polypropylene[J].Journal of East China University of Science and Technology,1997.23(2):204-209 |
[9] | 欧阳国恩,欧阳国荣.复合材料试验技术[M].武汉:武汉工业大学出版社,1993:33-34. |
[10] | Torres F G,Cubillas M L.Study of the interfacial properties of natural fibre reinforced polyethylene[J].Polymer Testing,2005,24(6):694-698. |
[11] | Zhou X D,Dai G.Lin Q F.Improvement in impact property of continuous glass mat reinforced polypropylene composites[J].Journal of Applied Polymer Science,2002,83(12):2680-2688. |
[12] | Subramanian R V,Crasto A S.Electrodeposition of a polymer interphase in carbon-fiber composites[J].Polymer Composites,1986,7(4):201-218. |
[13] | 周晓东,陈德东,林群芳,等.橡胶分子链在玻璃纤维表面的接枝[J].高分子材料科学与工程,2001,17(1):137-140.Zhou Xiaodong,Chen Dedong,Lin Qunfang,et al.Grafting of rubber chain onto the fiber surface[J].Polymer Materials Science and Engineering.2001,17(1):137-140. |
[14] | 刘晓烨,戴干策.黄麻纤维毡的表面处理及其增强聚丙烯复合材料的力学性能[J].复合材料学报,2006,23(5):63-69.Liu Xiaoye,Dai Gance.Pretreatment of jute fiber and the mechanical properties of jute fiber mat reinforced polypropylene[J].Acta Materiae Compositae Sinica,2006,23(5):63-69. |
[15] | Kompella M K,Lambros J.Micromeehanical characterization of cellulose fibers[J].Polymer Testing,2002,21(5):523-530. |
[16] | wu H F,Netravali A N.Weibull analysis of strength-length relationships in single nicalon SiC fibres[J].Journal of Materials Science,1992,27(12):3318-3324. |
[17] | 曹勇,吴义强,合田公一.甘蔗渣纤维统计强度及纤维增强可降解复合材料拉伸强度的评价[J].高分子材料科学与工程,2008,24(3):90-93,97.Cao Yong,Wu Yiqiang,Goda Koichi.Evaluation of statistical strength of bagasse fiber and tensile strength of fiber-reinforced biodegradable composites[J].Polymer Materials Science and Engineering,2008,24(3):90-93,97. |
[18] | Andersons J,Sparnins E,Joffe R,et al.Strength distribution of elementary flax fibres[J].Composites Science and Technology,2005,65(3/4):693-702. |
[19] | Zhang Y P,Wang X G,Pan N,et al.Weibull analysis of the tensile behavior of fibers with geometrical irregularities[J].Journal of Materials Science,2002,37(7):1401-1406. |
[20] | Joffe R,Andersons J,Wallstr(o)m L.Strength and adhesion characteristics of elementary flax fibres with different surface treatments[J].Composites Part A:Applied Science and Manufacturing,2003,34(7):603-612. |
[21] | Watson A S,Smith R L.An examination of statistical theories for fibrous materials in the light of experimental data[J].Journal of Materials Science,1985,20(9):3260-3270. |
[22] | Beckermann G W,Pickering K L.Engineering and evaluation of hemp fibre reinforced polypropylene composites:Micro-mechanics and strength prediction modelling[J].Composites Part A:Applied Science and Manufacturing,2009,40(2):210-217. |
[23] | Thomason J L,Vlug M A.Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene I:Tensile and flexural modulus[J].Composites Part A:Applied Science and Manufacturing,1996,27(6):477-484. |
[24] | Kumar K S,Ghosh A K,Bhatnagar N.Mechanical properties of injection molded long fiber polypropylene composites I:Tensile and flexural properties[J].Polymer Composites,2007,28(2):259-266. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%