欢迎登录材料期刊网

材料期刊网

高级检索

基于格林函数和有限元分析的多尺度方法模拟SiC/IMI834复合材料拉伸试验,研究复合材料微区应力分布、宏观力学性能和纤维失效情况.其中有限元分析用来计算SiC/IMI834复合材料微区应力分布并为格林函数提供应力传递集中因子.格林函数用来模拟SiC/IMI834复合材料宏观失效过程及力学性能.结果表明,失效纤维上应力恢复区长度受材料性能影响,与外加载荷无关;距离失效纤维越远,沿失效端面纤维上轴向应力越低;距离失效纤维越近,沿失效端面基体上轴向应力越低;SiC/IMI834复合材料宏观失效应变随纤维体积分数增加而提高,但SiC/IMI834复合材料初始纤维失效与纤维体积分数无关,拉伸应变均为0.01.

参考文献

[1] 原梅妮,杨延清,黄斌,吴耀金.界面反应对SiC纤维增强钛基复合材料界面剪切强度的影响[J].稀有金属材料与工程,2009(08):1321-1324.
[2] 刘晓奇,曹礼群,崔俊芝.复合材料弹性结构的高精度多尺度算法与数值模拟[J].计算数学,2001(03):369-384.
[3] N. Chawla;X. Deng;D.R.M. Schnell .Thermal expansion anisotropy in extruded SiC particle reinforced 2080 aluminum alloy matrix composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):314-322.
[4] 曲宝龙,李旭东,李俊琛.纤维复合材料电磁屏蔽效能分层多尺度计算[J].功能材料,2012(17):2408-2411.
[5] 上官林建,王松杰,刘保臣,张世勋.注射流动纤维取向的耦合模型[J].功能材料,2010(z1):136-138,143.
[6] 张鹏;李付国 .基于微观组织的颗粒增强金属基复合材料流变行为宏微观耦合分析[J].航空学报,2010,23(02):252-259.
[7] Yamakov, V;Saether, E;Glaessgen, EH .Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding[J].Journal of Materials Science,2008(23/24):7488-7494.
[8] Mclaughlin R .A study of the differential scheme for composite materials[J].International Journal of Engineering Science,1977,15(04):237-246.
[9] Klein P A;Zimmerman J A .Coupled atomistic continuum simulations using arbitrary overlapping domains[J].Journal of Computational Physics,2006,213(01):86-116.
[10] Budiansky B .On the elastic properties of some heterogeneous materials[J].Journal of the Mechanics and Physics of Solids,1965,13:223-227.
[11] Hill R .A self-consistent mechanics of composite materials[J].Journal of the Mechanics and Physics of Solids,1965,13:213-222.
[12] 戴兰宏,黄筑平,王仁.广义自洽Mori-Tanaka模型及涂层夹杂体复合材料的有效模量[J].固体力学学报,1999(03):187-194.
[13] 杨庆生;陈浩然 .夹杂问题中的自洽有限元法和复合材料的平均弹性性能[J].复合材料学报,1992,9(01):79-84.
[14] Eshelby J D .The determination of the elastic field of an ellipsoid inclusion and related problems[J].Proceedings of the Royal Society A:Mathematical,Physical & Engineering Sciences,1957,241(03):376-397.
[15] Mori T;Tanaka K .Average stress in matrix and average elastic energy of materials with misfitting inclusions[J].Acta Metallurgy,1973,21:571-574.
[16] 王镜波,崔俊芝,聂玉峰.单向纤维增强复合材料的双尺度分析模型及其力学参数计算[J].数值计算与计算机应用,2009(01):30-40.
[17] 刘书田,马宁.复合材料粘弹性本构关系与热应力松弛规律研究Ⅰ:理论分析[J].复合材料学报,2005(01):152-157.
[18] Nicolas Carrere;Frederic Feyel;Serge Kruch .Multi-scale modelling of silicon carbide reinforced titanium MMCs: Application to advanced compressor design[J].Aerospace science and technology,2003(4):307-315.
[19] Z.H. Xia;W.A Curtin .Multiscale modeling of damage and failure in aluminum-matrix composites[J].Composites science and technology,2001(15):2247-2257.
[20] 李建康,杨延清,罗贤,张荣军.SiC纤维增强钛基复合材料的横向力学性能[J].稀有金属材料与工程,2009(03):426-430.
[21] Tandon G P .Influence of free edge and corner singularities on interracial normal strength:application in model unidirectional composites[J].Comp Part B,1999,30(02):115-134.
[22] 陈东,乐永康,白亮,马乃恒,李险峰,王浩伟.原位TiB2/7055铝基复合材料的力学性能与阻尼性能[J].功能材料,2006(10):1599-1602.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%