欢迎登录材料期刊网

材料期刊网

高级检索

The thermal fatigue behavior of K465 superalloy was investigated at the peak temperature of 1050℃. By scanning electron microscopy (SEM) and optical microscopy, the main crack length was observed and measured. The initiation sites of the tested alloys are different in as-cast (named as K465) and solution heat treatment (named as SK465) conditions.In K465 alloy, most thermal fatigue cracks nucleate at (Nb,W,Ti)C carbides. In SK465 alloy, thermal fatigue cracks initiate in interdendritic regions, MC-type carbides and some interfaces. Thermal fatigue cracks propagate in transdendritic mode,and M6C-type carbides could retard thermal fatigue crack growth for SK465 superalloy.

参考文献

[1] Reger M;Remy L .High temperature,low cycle fatigue of IN-100 superalloy:Influence of frequency and environment at high temperature[J].Materials Science and Engineering A,1988,101A:55.
[2] Low cycle fatigue-dwell effects and damage mechanisms[J].International Journal of Fatigue,1999(1):55-76.
[3] Pedron J P;Pineau A .The effect of microstructure and environment on the crack growth behaviour of Inconel 718 alloy at 650℃ under fatigue,creep and combined loading[J].Materials Science and Engineering,1982,56(02):143.
[4] Woodford D A;Mowbray D F .Effect of material characteristics and test variables on thermal fatigue of cast superalloys[J].Materials Science and Engineering,1974,16(1-2):5.
[5] Kikuchi K;Ue K;Kudo Y;Saito M .Crack initiation in the first wall by thermal fatigue and creep[J].Fusion Engineering and Design,2000,49:229.
[6] Reger M;Remy L .High temperature,low cycle fatigue of IN-100 superalloy:Influence of temperature on the low cycle fatigue behaviour[J].Materials Science and Engineering A,1988,101A:47.
[7] Connolley T.;Reed PAS.;Starink M. .Short crack initiation and growth at 600 degrees C in notched specimens of Inconel718[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):139-154.
[8] Foumier D;Pineau A .Low cycle fatigue behaviour of Inconel 718 at 298K and 823K[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1977,8A(07):1095.
[9] Denda T;Bretz P L;Tien J K .Inclusion size effect on the fatigue crack propagation mechanism and fracture mechanics of a superalloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1992,23A(02):519.
[10] Bhattacher V S .Thermal fatigue behaviour of nickel-base superalloy 263 sheets[J].International Journal of Fatigue,1995,17(06):407.
[11] Reuchet J;Remy L .High temperature low cycle fatigue MAR-M509 superalloy Ⅰ:The influence of temperature on the low cycle fatigue behaviour from 20℃ to 1100℃[J].Materials Science and Engineering,1983,58(01):19.
[12] Reuchet J;Remy L .High temperature low cycle fatigue MAR-M509 superalloy Ⅱ:The influence of oxidation at high temperatures[J].Materials Science and Engineering,1983,58(01):33.
[13] Whittenberger J D;Bizon P T .Comparative thermal fatigue resistance of several oxide dispersion strengthened alloys[J].International Journal of Fatigue,1981,3(04):173.
[14] Beck C G;Santhan A T .Thermal fatigue crack propagation in cast cobalt-base alloy,MAR M-509[J].Scripta Metallurgica et Materialia,1978,12(03):255.
[15] Rho B S;Nam S W .Fatigue-induced precipitates at grain boundary of Nb-A286 alloy in high temperature low cycle fatigue[J].Materials Science and Engineering A,2000,291(1-2):54.
[16] Felberbaum L;Voisey K;Gaumann M;Viguier B, Mortensen A .Thermal fatigue of single-crystalline superalloy CMSX-4:a comparison of epitaxial laser-deposited material with the base single crystal[J].Materials Science and Engineering A,2001,299(1-2):152.
[17] Baufeld B.;Mullejans H.;Peteves S.;Bressers J.;Stamm W.;Tzimas E. .Thermal-mechanical fatigue of MAR-M 509 with a thermal barrier coating[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(1/2):231-239.
[18] Glenny E;Taylor T A .A study of the thermal fatigue behavior of metal[J].Journal of the Institute of Metals,1960,88:449.
[19] Ratma V;Sarma D S .Influence of thermal fatigue on the microstructure of a Ni-base superalloy[J].Scripta Metallurgica et Materialia,1993,29(04):467.
[20] Czech N;Stamm W .Thermal cycle fatigue properties of coated and uncoated single crystal superalloy[J].Surface and Coatings Technology,1996,86-87:15.
[21] Malpertu J L;Remy L .Influence of test parameters on the thermal-mechanical fatigue behaviour of a superalloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1990,21A(02):389.
[22] Loveday M S;Dyson B F .Prestrain-induced particle microcracking and creep cavitations in IN597[J].Acta Materialia,1983,31(03):397.
[23] Onofrio G .Fatigue crack growth of UDIMET720Li superalloy at elevated temperature[J].International Journal of Fatigue,2001,23(01):23.
[24] Li G B;Wu J J;Jing Y F;Li G Y .The nucleation and propagation of a thermal fatigue crack in4Cr2NiMoV steel[J].Journal of Materials Processing Technology,2000,100(01):63.
[25] Kerezsi B;Price J W H;Ibrahim R .A two-stage model for predicting crack growth due to repeated thermal shock[J].Engineering Fracture Mechanics,2003,70(01):721.
[26] He L Z;Zheng Q;Sun X F;Guan H R, Hu Z Q, Tieu A K,Lu C,and Zhu H T .Effect of heat treatment on Microstructures and Tensile properties of Ni-base Superalloy M963[J].Materials Science and Engineering A,2005,398(1-2):128.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%