欢迎登录材料期刊网

材料期刊网

高级检索

采用基于密度泛函理论的第一性原理方法,通过计算MgH2两种不同表面((001)和(110))的几何、能态及电子结构,考察其表面稳定性、解氢热力学及其与微观原子及电子结构间的内在关系.结果显示:MgH2(001)和MgH2(110)表面均未发生结构重构现象,两者均为MgH2晶体的稳定解理面,相比而言,MgH2(110)表面具有更高的结构稳定性.平均解氢焓与单H原子解离焓的计算结果表明,MgH2(001)表面具有较佳的解氢热力学.原子及电子结构分析表明,MgH2表面的结构稳定性和解氢热力学与表面H、Mg原子各自的配位数以及体系在费米能级附近的能隙密切相关,即较少的配位数与较窄的能隙对应着表面较低的结构稳定性与较佳的解氢热力学性能.

@@@@Using first-principles method based on the density functional theory, the geometries, energetic and electronic structures of two different MgH2 (001) and (110) surfaces were calculated to investigate the surface stabilities, dehydrogenation thermodynamics and their intrinsic relations with the micro-atomic and micro-electronic structures. The results show that no apparent reconstruction occurs either for MgH2(001) surface or for MgH2(110) counterpart, which suggests that both of them are stable cleavage planes of MgH2 crystal. Comparatively, MgH2(110) surface exhibits a higher structural stability. The calculations of average desorption enthalpy and single H atom dissociation enthalpy show that MgH2(001) surface presents better dehydrogenation thermodynamics. The analysis of atomic and electronic structures implys that the structural stabilities and dehydrogenation thermodynamics of MgH2 surface are closely associated with the respective coordination number of H and Mg atoms located at surface layer as well as the energy gap near Fermi energy level of the system. Namely, the fewer coordination number and the narrower energy gap mean the lower structural stability and the better dehydrogenation thermodynamics of the surface.

参考文献

[1] SCHLAPBACH L;ZüTTEL A .Hydrogen-storage materials for mobile applications[J].NATURE,2001,414:353-358.
[2] Hydrogen storage in Mg: A most promising material[J].International journal of hydrogen energy,2010(10):P.5133.
[3] 陈军,朱敏.高容量储氢材料的研究进展[J].中国材料进展,2009(05):2-10.
[4] Norberg, N.S.;Arthur, T.S.;Fredrick, S.J.;Prieto, A.L. .Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution[J].Journal of the American Chemical Society,2011(28):10679-10681.
[5] Mark Paskevicius;Hu-Yong Tian;Drew A. Sheppard .Magnesium Hydride Formation within Carbon Aerogel[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2011(5):1757-1766.
[6] Li WY;Li CS;Ma H;Chen J .Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption[J].Journal of the American Chemical Society,2007(21):6710-6711.
[7] LIANG G;HUOT J;BOILY S;van NESTE A SCHULZ R .Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm(Tm=Ti,V,Mn,Fe and Ni)[J].Journal of Alloys and Compounds,1999,292(1/2):247-252.
[8] D.L Croston;D.M. Grant;G.S. Walker .The catalytic effect of titanium oxide based additives on the dehydrogenation and hydrogenation of milled MgH_2[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2010(1/2):251-258.
[9] Catalytic effect of halide additives ball milled with magnesium hydride[J].International journal of hydrogen energy,2010(4):p.1706.
[10] Rudy W. P. Wagemans;Joop H. van Lenthe;Petra E. de Jongh;A. Jos van Dillen;Krijn P. de Jong .Hydrogen Storage in Magnesium Clusters: Quantum Chemical Study[J].Journal of the American Chemical Society,2005(47):16675-16680.
[11] Li S;Jena P;Ahuja R .Dehydrogenation mechanism in catalyst-activated MgH2[J].Physical review, B. Condensed matter and materials physics,2006(13):2106-1-2106-4-0.
[12] TAO S X;NOTTEN P H L;SANTEN R A;JANSEN A P J .First-principles predicitions of potential hydrogen storage materials:Nanosized Ti(core)/Mg(shell)hydrides[J].Physical Review B:Condensed Matter,2011,83(19):195403-195410.
[13] 张健,黄雅妮,毛聪,龙春光,邵毅敏,付俊庆,彭平.Ti,V,Nb掺杂MgH2储氢体系的放氢性能及微观机理[J].化学学报,2010(20):2077-2085.
[14] 胡子龙.贮氢材料[M].北京:化学工业出版社,2002:60-61.
[15] Du AJ;Smith SC;Yao XD;Lu GQ .Ab initio studies of hydrogen desorption from low index magnesium hydride surface[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2006(9):1854-1859.
[16] 吴广新;张捷宇;李谦;周国治 .H 在 MgH2表面的吸附研究[J].中国稀土学报,2010,28(01):306-312.
[17] J.H. Dai;Y. Song;R. Yang .Intrinsic mechanisms on enhancement of hydrogen desorption from MgH_2 by (001) surface doping[J].International journal of hydrogen energy,2011(20):12939-12949.
[18] BORTZ M;BERTHEVILLE B;BOTTGER G;YVON K .Structure of the high pressure phaseγ-MgH2 by neutron powder diffraction[J].Journal of Alloys and Compounds,1999,287(1/2):L4-L6.
[19] DELLEY B .Analytic energy derivatives in the numerical local-density-functional approach[J].Journal of Chemical Physics,1991,94(11):7245-7250.
[20] PERDEW J P;BURKE K;ERNZERHOF M .Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-3868.
[21] PACK J D;MONKHORST H J .Special points for brillouin-zone integrations-A reply[J].Physical Review B:Condensed Matter,1977,16(04):1748-1749.
[22] Wu, G.;Zhang, J.;Li, Q.;Wu, Y.;Chou, K.;Bao, X. .Dehydrogenation kinetics of magnesium hydride investigated by DFT and experiment[J].Computational Materials Science,2010(Suppl.1):S144-S149.
[23] HOU Z F .First-principles investigation of Mg(AlH4)2 complex hydride[J].Journal of Power Sources,2006,159(01):111-115.
[24] 张健,周惦武,刘金水.H原子在Mg(0001)表面的吸附与扩散性能研究[J].中国科学E辑,2009(08):1440-1447.
[25] ZHU C Y;SAKAGUCHI N;HOSOKAI S;WATANABE S AKIYAMA T .In situ transmission electron microscopy observation of the decomposition of MgH2 nanofiber[J].International Journal of Hydrogen Energy,2011,36(05):3600-3605.
[26] Ki Chul Kim;Bing Dai;J Karl Johnson;David S Sholl .Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction[J].Nanotechnology,2009(20):204001-7.
[27] WANG J;WANG G;ZHAO J .Density-functional study of Aun(n=2-20)clusters:Lowest-energy structures and electronic properties[J].Physical Review B:Condensed Matter,2002,66(03):035418-035423.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%