欢迎登录材料期刊网

材料期刊网

高级检索

研究了少量Al替代Mg(x=0.1)对La2Mg1-xAlxNi7.5Co1.5贮氢合金电化学循环稳定性的影响.经过充放电循环后,La2Mg1-xAlxNi7.5Co1.5(x=0.0,0.1)合金中的LaNi3相和αLa2Ni7相仍然保持PuNi3型结构和Ce2Ni7型结构,没有发生变化,此外,在这2种合金中出现少量新的物相La(OH)3,Mg(OH)2和Ni.LaNi3相和αLa2Ni7相吸氢形成氢化物后也保持PuNi3型结构和Ce2Ni7型结构.La2MgNi7.5Co1.5吸氢后,LaNi3相和αLa2Ni7相晶胞均呈各向异性膨胀,但LaNi3相的各向异性膨胀程度及晶胞体积膨胀率明显大于αLa2Ni7相.相比La2MgNi7.5Co1.5氢化物,Al替代Mg对La2Mg0.9Al0.1Ni7.5Co1.5氢化物中的αLa2Ni7相吸氢体积膨胀的抑制作用很小,但Al替代Mg使该氢化物中LaNi3相的c轴膨胀率和晶胞体积v的膨胀率均明显降低.电化学吸放氢循环后合金的粒径变化及形貌观察表明,La2Mg0.9A10.1Ni7.5Co1.5合金的抗粉化能力优于La2MgNi7.5Co1.5合金,这是Al替代Mg改善La2MgNi7.5Co1.5合金电极电化学循环稳定性的重要原因.

参考文献

[1] Kadir K et al.[J].Journal of Alloys and Compounds,1997,257:115.
[2] Kadir K et al.[J].Journal of Alloys and Compounds,1999,284:145.
[3] Kadir K et al.[J].Journal of Alloys and Compounds,1999,287:264.
[4] Kadir K et al.[J].Journal of Alloys and Compounds,2000,302:112.
[5] Chen J et al.[J].Electrochemical and Solid-State Letters,2000,3:249.
[6] Kohno T et al.[J].Journal of Alloys and Compounds,2000,31:L5.
[7] Pan H G et al.[J].Journal of Alloys and Compounds,2003,351:228.
[8] 王大辉,罗永春,闫汝煦,兴长策,康龙.La0.67Mg0.33Ni2.5Co0.5贮氢合金的制备和MH电极性能研究[J].稀有金属材料与工程,2004(12):1283-1286.
[9] Liao B et al.[J].Journal of Alloys and Compounds,2003,356-357:746.
[10] Pan H G et al.[J].International Journal of Hydrogen Energy,2003,28:113.
[11] 王大辉,罗永春,闫汝煦,康龙,陈剑虹.PuNi3型RM3贮氢合金的研究进展[J].稀有金属材料与工程,2005(05):676-679.
[12] Wang Dahui et al.[J].Journal of Alloys and Compounds,2006,413:193.
[13] 王大辉,罗永春,康龙,阎汝煦.La0.67Mg0.33Ni3.0-xAlx(x=0.0~0.35)贮氢合金相结构和电化学性能研究[J].稀有金属材料与工程,2006(09):1379-1382.
[14] Liu Yongfeng et al.[J].Journal of Alloys and Compounds,2005,395:291.
[15] Liao Bin et al.[J].Electrochimica Acta,2004,50:1057.
[16] Young R A.The Rietveld Method[M].Oxford:Oxford University Press,1993
[17] Pan H G et al.[J].International Journal of Hydrogen Energy,2003,28:1219.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%