对壳聚糖均相接枝L-谷氨酸甲酯产物的结构和性能进行了研究.IR、CP/MAS13CNMR结果表明,谷氨酸甲酯侧链通过酰胺键与壳聚糖结合,形成了梳状接枝产物.XRD谱图中,在2θ=8.3°处出现衍射峰,这是因接入侧链使壳聚糖主链堆砌结构发生改变而引起的.DSC、TG/DTG测试发现,均相接枝物高温一侧吸放热峰的数量与位置有明显改变,并互有不同,反映出结构和接枝量的差异使壳聚糖接枝产物具有不同的热稳定性.
The structure and properties of chitosan homogeneously grafted by methyl L-glutamate are studied. IR and CP/MAS13CNMR results show that the methyl L-glutamate side chains are bonded with chitosan through amide bond to form comb-like graft products. In XRD spectrum, new diffraction peak appearing at 2θ=8. 3° is the result of chitosan main chain structure change caused by the grafted side chains. DSC, TG/DTG testing show that the quantity and location of exothermic peak of homogeneous graft products show more significant changes at high temperature side, and each is different, reflecting that chitosan graft products have different thermal stability because of different structure and the grafting number.
参考文献
[1] | Manabu S;Yoshimitsu K .Preparation and drug-releasing behaviour of copoly(α-amino acid) membranes[J].Journal of Membrane Science,1986,27:241. |
[2] | Akamatsu K;Imai M;Yamasaki Y et al.Disposition characteristics of glycosylated poly (amino acids) as liver cellspecific drug carrier[J].Journal of Drug Targeting,1998,6(03):229. |
[3] | Hirabayashi H;Nishikawa M;Takakura Y et al.Development and pharmaco kinetics of galaetosylated poly-L-glutamic acid as a biodegradable carrier for liver-specific drug delivery[J].Pharmaceutical Research,1996,13(06):880. |
[4] | Sidman K R;Steber W D;Sehwope A D et al.Controlled release of macromolecules and pharmaceuticals from synthetic polypeptides based on glutamic acid[J].Biopolymers,1983,22:547. |
[5] | Oh I;Lee K;Kwon HY;Lee YB;Shin SC;Cho CS;Kim CK .Release of adriamycin from poly(gamma-benzyl-L-glutamate)/poly(ethylene oxide) nanoparticles.[J].International Journal of Pharmaceutics,1999(1):107-115. |
[6] | Yasuyosi Miyachi;Kazuyuki Jokei;Masahito Oka;Toshio Hayashi .Preparation and properties of biodegradable copoly(N-hydroxyalkyl-D, L-glutamine) membranes[J].European Polymer Journal,1999(5):767-773. |
[7] | 潘仕荣;施峰;黄宁芳 等.白氨酸-谷氨酸甲酯-谷氨酸共聚物的合成研究[J].生物医学工程学杂志,1997,14(02):101. |
[8] | Sidman K R;Schwope A D;Steber W D et al.Biodegradable implantable sustained release systems based on glutamic acid copolymers[J].Journal of Membrane Science,1980,7:277. |
[9] | Ito Y;Miyashita K;Kashiwagi T et al.Synthesis and interaction with blood of polyetherurethaneurea/polypeptide block copolymer[J].Biomater Artif Cell Immobilization Biotechn,1993,21(04):571. |
[10] | 潘仕荣;黄宁芳;施锋 等.α-氨基酸共聚物的抗凝血性[J].生物医学工程学杂志,1991,8(03):209. |
[11] | Goodman M;Peggion E .α-Amino acid N-carboxy anhydride polymerizations-a mechanistic analysis[J].Pure and Applied Chemistry,1981,53:699. |
[12] | Blout E R;Karlson R H .Polypeptides Ⅲ:the synthesis of high molecular weight poly-γ-benzyl-L-glutamates[J].Journal of the American Chemical Society,1956,78:941. |
[13] | 朱树新.开环聚合[M].北京:化学工业出版社,1987:29. |
[14] | Aiba S;Minoura N;Fujiwara Y .Graft copolymerization of amino acids onto partially deacetylated chtin[J].International Journal of Biological Macromolecules,1985,7:120. |
[15] | Kurita K;Yoshida A;Koyama Y .New polysaccharide/polypeptide hybride materials based on chitin and poly(γ-methyl L-glutamate)[J].MACROMOLECULES,1988,21:1579. |
[16] | Krajewska B .Diffusion of metal ions through gel chitosan membranes[J].Reactive and Functional Polymers,2001,47:37. |
[17] | Saito H;Tabeta R;Ogawa K .High-resolution solid-state 13CNMR study of chitosan and its salts with acids:conformational characterization of polymorphs and helical structures as viewed from the conformation-dependent 13C chemical shifts[J].Macromolecules,1987,20:2424. |
[18] | Hiroki Y;Hiroyuki M;Isao A .Carbon-13CP/MASNMR study of the conformation of stretched or heated low sulfur keratin protein films[J].Macromolecules,1991,24:862. |
[19] | Yoshimizu H;Ando I .Conformational characterization of wool keratin and s-(carboxymethyl)kerateine in the solid state by carbon-13 CP/MASNMR spectroscopy[J].MACROMOLECULES,1990,23:2908. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%