欢迎登录材料期刊网

材料期刊网

高级检索

复合材料通常是具有很多优良性能的复合体,而纳米材料因其特殊的结构和尺寸效应而具有常规材料无法比拟的优异性能.纳米纤维复合材料的出现结合了复合材料和纳米材料的特殊性能.目前,相关的研究重点是把常规复合材料纳米化,使其成为具有更优异性能的复合材料.介绍了国内外纳米纤维复合材料的3种制备工艺和目前的研究现状,并结合现有实验手段和对材料的使用性能要求提出了一种新型的制备方法.

参考文献

[1] Xu K;Russell A M;Laabs F C et al.A deformation processed A1-20%Sn in-situ composite[J].Scripta Materialia,2001,44:935.
[2] Raabe D;Hangen U .Correlation of microstructure and typeⅡ superconductivity of a heavily cold rolled Cu-20mass%Nb in situ composite[J].Acta Materialia,1996,44(03):953.
[3] Raabe D;Ge J .Experimental study on the thermal stability of Cr filaments in a Cu-Cr-Ag in situ composite[J].Scripta Materialia,2004,51:915.
[4] D.Raabe;D.Mattissen .Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite[J].Acta materialia,1998(16):5973-5984.
[5] Raabe D.;Mattissen D. .Experimental investigation and Ginzburg-Landau modeling of the microstructure dependence of superconductivity in Cu-Ag-Nb wires[J].Acta materialia,1999(3):769-777.
[6] Jia J;Raabe D .Evolution of crystallinity and of crystallographic orientation in isotactic polypropylene during rolling and heat treatment[J].European Polymer Journal,2006(8):1755-1766.
[7] U. HANGEN;D. RAABE .MODELLING OF THE YIELD STRENGTH OF A HEAVILY WIRE DRAWN Cu-20%Nb COMPOSITE BY USE OF A MODIFIED LINEAR RULE OF MIXTURES[J].Acta Metallurgica et Materialia,1995(11):4075-4082.
[8] Thilly L.;Lecouturier F.;Peyrade JP.;Grilhe J.;Askenazy S.;Colin J. .Interface instability in the drawing process of copper/tantalum conductors[J].Acta materialia,1999(3):853-857.
[9] Thilly L;Lecouturier F;Stebut J yon .Size-induced enhanced mechanical properties of nanocomposite copper/niobium wires:nanoindentation study[J].Acta Materialia,2002,50:5049.
[10] Thilly L.;Coffe G.;Peyrade JP.;Askenazy S.;Lecouturier F. .Ultra high strength nanofilamentary conductors: the way to reach extreme properties[J].Physica, B. Condensed Matter,2001(0):648-652.
[11] Thilly T.;Ludwig O.;Lecouturier F.;Veron M. .Deformation mechanism in high strength Cu/Nb nanocomposites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(0):510-513.
[12] Vidal V;Thilly L;Lecouturier F et al.Effects of size and geometry on the plasticity of high-strength copper/tantalum nanofilamentary conductors obtained by severe plastic deformation[J].Acta Materialia,2006,54:1063.
[13] D. MATTISSEN;D. RAABE;F. HERINGHAUS .EXPERIMENTAL INVESTIGATION AND MODELING OF THE INFLUENCE OF MICROSTRUCTURE ON THE RESISTIVE CONDUCTIVITY OF A Cu-Ag-Nb IN SITU COMPOSITE[J].Acta materialia,1999(5):1627-1634.
[14] Han K;Vasquez A A;Xin Y et al.Microstructure and tensile properties of nanostructured Cu-25wt%Ag[J].Acta Materialia,2003,51:767.
[15] K.Han;J.D.Embury;J.J.Petrovic .Microstructural aspects of Cu-Ag produced by the taylor wire method[J].Acta materialia,1998(13):4691-4699.
[16] Han K;Hirth J P;Embury J D .Modeling the formation of twins and stacking faults in the Ag-Cu system[J].Acta Materialia,2001,49:1537.
[17] Han K;Sims JR;Campbell LJ;Schneider-Muntau HJ;Pantsyrnyi V.I. -;Shikov A;Nikulin A;Vorobieva A;Embury JD .The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(1):99-114.
[18] 宁远涛,张晓辉,吴跃军.Cu-Ag合金原位纤维复合材料的形变特征[J].贵金属,2006(03):1-6.
[19] 宁远涛,张晓辉,秦国义,张婕.不同凝固条件制备的Cu-Ag合金原位纤维复合材料的结构与性质[J].贵金属,2005(03):39-50.
[20] 宁远涛,张晓辉,张婕.大变形Cu-10Ag原位纳米纤维复合材料[J].稀有金属材料与工程,2005(12):1930-1934.
[21] 宁远涛,张晓辉,张婕.大变形Cu-Ag合金原位纤维复合材料的稳定性[J].中国有色金属学报,2005(04):506-512.
[22] 宁远涛,张晓辉,秦国义,张婕.制备工艺对Cu-Ag合金原位复合材料结构与性能的影响[J].稀有金属,2005(04):442-447.
[23] 张晓辉,宁远涛,李永年,戴红,杨家明.大变形Cu-10Ag原位纤维复合材料的结构和性能[J].中国有色金属学报,2002(01):115-119.
[24] 张晓辉,宁远涛,李永年,戴红.凝固速率对Cu-Ag原位纤维复合材料性能的影响[J].贵金属,2002(01):19-25.
[25] 张晓辉,闫琳,宁远涛.稳定化处理对Cu-1Ag-.4Ce原位纳米纤维复合材料的组织及性能的影响[J].稀有金属,2005(04):432-435.
[26] 张晓辉,闫琳,宁远涛.稀土元素对Cu-Ag原位纤维复合材料的结构与性能影响[J].功能材料,2004(z1):1084-1087.
[27] 张雷,颜芳,孟亮.高强高导Cu-Ag合金的研究现状与展望[J].材料导报,2003(05):15-17,54.
[28] 张雷,孟亮.应变程度对Cu-12%Ag合金纤维相形成及导电性能的影响[J].金属学报,2005(03):255-259.
[29] 张雷,孟亮.合金元素对Cu-Ag合金组织、力学性能和电学性能的影响[J].中国有色金属学报,2002(06):1218-1223.
[30] 张雷,孟亮.纤维相强化Cu-12%Ag合金的组织和力学性能[J].中国有色金属学报,2005(05):751-756.
[31] 贺佳,刘嘉斌,孟亮.纤维相复合Cu-Ag合金组织、性能及合金化的研究与发展[J].材料导报,2006(10):87-91.
[32] 高海燕,王俊,疏达,孙宝德.形变铜基原位复合材料的研究现状及展望[J].材料导报,2006(03):87-91.
[33] Russell A M et al.A high-strength,high-conductivity AlTi deformation processed metal metal matrix composite[J].Composites Part A:Applied Science and Manufacturing,1999,30:239.
[34] 葛继平 .形变Cu-Ag-Nb原位复合材料的微观组织[J].中国有色金属学报,1998,8(z1):164.
[35] J. COLIN;L. THILLY .AXIAL AND RADIAL INTERFACE INSTABILITIES OF COPPER/TANTALUM CYLINDRICAL CONDUCTORS[J].Acta materialia,1999(9):2761-2768.
[36] 漏卫娟,张雷,孟亮.应变过程中Cu-6%Ag合金的组织纤维化及导电特性[J].稀有金属材料与工程,2006(z2):374-377.
[37] 刘嘉斌,孟亮.Cu-6%Ag合金组织纤维化过程中的应变协调行为[J].金属学报,2006(09):931-936.
[38] 孙世清,郭志猛,殷声.Cu-Fe-Cr原位复合材料的纤维相结构[J].中国有色金属学报,2003(03):658-661.
[39] 姜微华,孙世清,刘宗茂,刘丛,胡彦君.Cu-Fe-Cr原位复合材料和Fe-Cr纤维的磁学特性研究[J].河北科技大学学报,2006(03):221-223,238.
[40] 李振铎,张雷,孟亮.稀土元素对Cu-6%Ag及Cu-24%Ag合金微观组织的影响[J].中国稀土学报,2005(03):334-338.
[41] 李振铎,孟亮.稀土对纤维相Cu-12%Ag合金组织性能的影响[J].浙江大学学报(工学版),2005(12):1837-1841.
[42] Benghalem A;Morris D G .Microstructure and strengh of wire-drawn Cu-Ag filamentary compodires[J].Acta Materialia,1997,45(01):397.
[43] Hong S I;Hill M A .Microstructure stability and mechanical response of Cu-Ag microcomposites wires[J].Acta Materialia,1998,46:4111.
[44] Hong, SI;Hill, MA .Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites[J].Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing,1999(1-2):151-158.
[45] Karasek K R;Bevk J .Normal-state resistivity of in situformed ultrafine filamentary Cu-Ag composites[J].Journal of Applied Physics,1981,52(03):1370.
[46] 肖伯律,樊建中,左涛,张维玉,徐骏,石力开.塑性变形对15% SiCp/2009 Al复合材料的性能改善[J].稀有金属,2004(01):13-15.
[47] 葛继平 .Cu-Ag-Cr合金的线拉形变过程[J].中国有色金属学报,1998,8(z1):159.
[48] 丁雨田,曹军,李来军,许广济,寇生中.热处理和冷变形对连续定向凝固Cu-Ag合金性能的影响[J].兰州理工大学学报,2006(05):13-16.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%