采用区熔定向凝固的方法, 制备目标成分为Fe81Ga19的磁致伸缩取向晶体,进行900℃保温真空热处理3 h后油淬. 采用交流阻抗仪测定其阻抗谐振频率, 求出机电耦合系数(K33). 结果表明, 直流磁场强度从32.7 mT增加到48.1和63.6 mT时, K33值由0.126增加到0.129和0.133;压力从0增加到15 MPa, 在32.7 mT磁场条件下K33值与预加应力变化关系不明显, 但在63.6 mT磁场及15 MPa下热处理样品的K33值达到0.157; 样品表面缺陷对交流阻抗曲线有直接影响, 存在表面缺陷的样品很难测出K33值.
Fe81Ga19 magnetostrictive oriented crystalline have been prepared by zone melting unidirectional solidification. Vacuum annealing at 900°C for 3h has been carried out followed by oil quenching. The electromechanical coupling coefficient (k33) is determined by the impedance resonance frequency tested using AC impedance instrument. With the increase of DC magnetic field, K33 is increased appreciably with the value of 0.126 for 327Oe, 0.129 for 481Oe and 0.133 for 636Oe. Respectively with the increase of stress from 0MPa to 15MPa, K33 remains unchanged in 327Oe, but in 636Oe K33 is increased obviously. Heat treatment at 900°C for 3h followed by oil quenching, K33 is improved with the value of 0.157 in 636Oe magnetic field and 15Mpa stress. Surface quality of sample affects the AC impedance curve and it is hard to measure the K33 of defective sample.
参考文献
[1] | |
[2] | |
[3] | |
[4] |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%