A coupled model including electromagnetic field, fluid dynamic, heat transfer and so-lidification, is developed and applied to the numerical simulation of steel flow andsolidification in a 100mm× 100mm soft-contact mold. In this study, the 3D finite dif-ference method and n, on-staggered grid system for fluid flow with body fitted coordinatewere employed. Numerical results show that the electromagnetic force mainly affectsthe steel flow at upper part of mold, especially in the vicinity of meniscus. There existupward flows covering the surfaces of the billet due to the concentration of electro-magnetic force on the upper part of the billet. This flows join together and form adownward flow near the SEN, so a distinct circulating flow zone is formed at upperpart of mold. After applying electromagnetic force, the steel velocity is improved andthe temperature is raised. The strong stirring of electromagnetic force on liquid steelmakes the kinetic energy on free surface increase. It is clearly seen that the solidifi-cation start point shifts downward in soft contact mold. As a result, the initial shellthickness gets thin and the initial solidification shell length is shortened.
参考文献
[1] | |
[2] |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%