欢迎登录材料期刊网

材料期刊网

高级检索

以TEOS(四乙氧基硅烷)和APTES(3-氨丙基三乙氧基硅烷)共缩聚制备SiO2凝胶后采用N3200(1,6-环己烷二异氰酸酯低聚物)对其改性,经常压干燥制备了聚合物改性SiO2气凝胶。采用TGA、N2吸附-脱附、SEM和单轴抗压实验等测试方法对所制备的气凝胶进行了表征。结果表明:随气凝胶中聚合物含量的增加,气凝胶制备过程中的收缩减小,体积密度和弹性模量先降低后略有升高,抗压强度降低,开裂极限应变和破坏极限应变大幅度提高,柔韧性较改性前大有改善。聚合物改性气凝胶内部呈现疏松多孔的网络结构,孔隙率随聚合物含量的增加先降低后提高,体积密度为434kg.m-3时的热导率为0.052W.(m.K)-1。

Silica gels,which were prepared by copolymerization of TEOS with APTES,were modified with N3200(1,6-hexamethylene diisocyanate oligomer).Polymer modified silica aerogels were obtained via drying of the silica gels under ambient pressure.The resulting materials were characterized by TGA,nitrogen adsorption-desorption,SEM,uniaxial compression tests,etc.It is found that with the increasing of polymer incorporated in silica aerogels,the shrinkage and the compressive strength of this material decrease,the bulk density and the elastic modulus firstly decrease and then increase slightly,the cracking limit strain and breaking limit strain during compression test increase dramatically.SEM observation indicates that the structure of polymer modified silica aerogels is porous network.The porosity decreases and then increases with the increasing of polymer incorporated in silica aerogels.The thermal conductivity for a sample with density of 434 kg·m-3 is 0.052 W·(m·K)-1.

参考文献

[1] Hüsing N, Schubert U. Aerogels-airy materials: Chemistry, structure, and properties [J]. Angew Chem Int Ed, 1998, 37(1/2): 22-45.
[2] Hüsing N, Schubert U. Aerogels [M]. Weinheim: Wiley, 2005: 1-27.
[3] Schmidt M, Schwertfeger F. Applications for silica aerogel products [J]. J Non-Cryst Solids, 1998, 225: 364-368.
[4] Hrubesh L W. Aerogel applications [J]. J Non-Cryst Solids, 1998, 225: 335-342.
[5] 杨海龙, 倪 文, 陈德平, 等. 制备条件对硅酸钙复合纳米孔超级绝热材料的热导率的影响 [J]. 北京科技大学学报, 2008, 30(1): 57-62.
[6] Yang H L, Ni W, Chen D P, et al. Mechanism of low thermal conductivity of xonotlite-silica aerogel nanoporous super insulation material [J]. International Journal of Minerals Metallurgy and Materials, 2008, 15(5): 649-653.
[7] 杨海龙, 倪 文, 梁 涛, 等. 硅酸铝纤维增强纳米孔绝热材料的制备与表征 [J]. 材料工程, 2007(7): 63-66.
[8] 冯 坚, 高庆福, 张长瑞, 等. SiO2溶胶配比对气凝胶隔热复合材料力学性能的影响 [J]. 复合材料学报, 2010, 27(6): 179-183.
[9] Parmenter K E, Milstein F. Mechanical properties of silica aerogels [J]. J Non-Cryst Solids, 1998, 223(3): 179-189.
[10] Zhang Z H, Shen J, Ni X Y, et al. Hydrophobic silica aerogels strengthened with nonwoven fibers [J]. J Macromol Sci, Part A: Pure Appl Chem, 2006, 43(11): 1663-1670.
[11] Karout A, Buisson P, Perrard A, et al. Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts [J]. J Sol-Gel Sci Technol, 2005, 36(2): 163-171.
[12] Aspen Aerogels, Inc. Products grid and case studies. http://www.aerogel.com.
[13] White S, Rasky D. Tough, lightweight, supper insulating aerogel/tile composite have potential industrial applications [J]. Mater Technol, 1999, 14(1): 13-16.
[14] Katti A, Shimpi N, Roy S, et al. Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels [J]. Chem Mater, 2006, 18(2): 285-296.
[15] Zhang G H, Dass A, Rawashdeh A M, et al. Isocyanate-crosslinked silica aerogel monoliths: Preparation and characterization [J]. J Non-Cryst Solids, 2004, 350: 152-164.
[16] Leventis N. Three-dimensional core-shell superstructures: Mechanically strong aerogels [J]. Acc Chem Res, 2007, 40(9): 874-884.
[17] Capadona L A, Meador M A B, Alunni A, et al. Flexible, low-density polymer crosslinked silica aerogels [J]. Polymer, 2006, 47(16): 5754-5761.
[18] Meador M A, Capadona L A, Mccorkle L, et al. Structure-property relationships in porous 3D nanostructures as a function of preparation conditions: Isocyanate cross-linked silica aerogels [J]. Chem Mater, 2007, 19(9): 2247-2260.
[19] Nguyen B N, Meador M A B, Medoro A, et al. Elastic behavior of methyltrimethoxysilane based aerogels reinforced with tri-isocyanate [J]. ACS Appl Mater Interfaces, 2010, 2(5): 1430-1443.
[20] Meador M A B, Scherzer C M, Vivod S L, et al. Epoxy reinforced aerogels made using a streamlined process [J]. ACS Appl Mater Interfaces, 2010, 2(7): 2162-2168.
[21] Mulik S, Sotiriou-Leventis C, Churu G, et al. Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization [J]. Chem Mater, 2008, 20(15): 5035-5046.
[22] Meador M A B, Fabrizio E F, Ilhan F, et al. Cross-linking amine-modified silica aerogels with epoxies: Mechanically strong lightweight porous materials [J]. Chem Mater, 2005, 17(5): 1085-1098.
[23] Ilhan U F, Fabrizio E F, Mccorkle L, et al. Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica [J]. J Mater Chem, 2006, 16(29): 3046-3054.
[24] Leventis N, Palczer A, Mccorkle L, et al. Nanoengineered silica-polymer composite aerogels with no need for supercritical fluid drying [J]. J Sol-Gel Sci Technol, 2005, 35(2): 99-105.
[25] Leventis N, Sotiriou-Leventis C, Zhang G H, et al. Nanoengineering strong silica aerogels [J]. Nano Lett, 2002, 2(9): 957-960.
[26] Meador M A B, Weber A S, Hindi A, et al. Structure-property relationships in porous 3D nanostructures: Epoxy-cross-linked silica aerogels produced using ethanol as the solvent [J]. ACS Appl Mater Interfaces, 2009, 1(4): 894-906.
[27] Nguyen B N, Meador M A B, Tousley M E, et al. Tailoring elastic properties of silica aerogels cross-linked with polystyrene [J]. ACS Appl Mater Interfaces, 2009, 1(3): 621-630.
[28] Nilsen E, Einarsrud M A, Scherer G W. Effect of precursor and hydrolysis conditions on drying shrinkage [J]. J Non-Cryst Solids, 1997, 221(2/3): 135-143.
[29] Smith D M, Scherer G W, Anderson J M. Shrinkage during drying of silica gel [J]. J Non-Cryst Solids, 1995, 188(3): 191-206.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%