欢迎登录材料期刊网

材料期刊网

高级检索

为了考察Mg-10Gd-3Y-0.6Zr-1Ag镁合金在不同条件下的变形行为,采用 Gleeble2000热模拟机对该合金进行研究,分析了该合金在变形温度350~500℃,应变速率0.001~1 s-1条件下流变应力的变化规律.研究结果表明:变形温度和应变速率对流变应力有显著的影响,流变应力随变形温度的升高和应变速率的降低而降低;在应变速率相同的情况下,合金在较高温度下变形时,流变应力随应变量的增加达到峰值后,基本呈稳态流变特征;采用双曲正弦模型计算出该合金的变形激活能和应力指数,建立了该合金相应的热变形本构关系.

The Mg-10Gd-3Y-0. 6Zr-1Ag alloy has been performed on Gleeble2000 thermal simulator at the temperature from 350℃ to 500℃ with the strain rate from 0.001 s-1 to 1 s-1 , and the compressive deformation behavior in different deformation conditions has been studied. The results show that the flow stress is significantly affected by deformation temperature and strain rate, and the flow stress decreases with the deformation temperature increasing and strain rate decreasing. The flow stress tends to be constant after a peak value at higher deformation temperature with the constant strain rate. The deformation activation energy and stress exponent were evaluated by the hyperbolic?sine mathematics model and the hot deformation constitutive relationship was established.

参考文献

[1] J. D. Bernard;J. B. Jordon;M. Lugo;J. M. Hughes;D. C. Rayborn;M. F. Horstemeyer.Observations and modeling of the small fatigue crack behavior of an extruded AZ61 magnesium alloy[J].International Journal of Fatigue,2013:20-29.
[2] 高声远,张志强,乐启炽,贾征,崔建忠.MgCO_3在AZ31镁合金中的细化效果及机理[J].材料科学与工艺,2011(03):49-52.
[3] YANG M B;LI H L;DUAN C Y et al.Effects of minor Ti addition on as-cast microstructure and mechanical properties of Mg-3Sn-2Sr(wt.%) magnesium alloy[J].Journal of Alloys and Compounds,2013,579:92-99.
[4] 刚建伟,陈晓霞,唐伟能,陈荣石.高塑性Mg-Gd-Zn镁合金管材的组织和力学性能研究[J].材料科学与工艺,2013(03):87-94.
[5] Liwei Lu;Tianmo Liu;Yong Chen.Deformation and fracture behavior of hot extruded Mg alloys AZ31[J].Materials Characterization,2012:93-100.
[6] 刘俊伟,陈振华,陈鼎,李贵发.AZ31镁合金挤压板材的中温变形机理及软化机制[J].中国有色金属学报(英文版),2012(06):1329-1335.
[7] 汤伊金,章桢彦,靳丽,董杰,丁文江.Mg-Gd系合金时效析出研究进展[J].中国有色金属学报,2014(01):8-24.
[8] 杨忠,李建平,吴永兴,刘继林,杨志玲.Gd和Y含量对Mg-Gd-Y-0.5Zr合金组织性能的影响[J].铸造,2013(06):545-548,553.
[9] MANDAL M;MOON A P;DEO G et al.Corrosion behavior of Mg-2.4Zn alloy micro-alloyed with Ag and Ca[J].Corrosion Science,2014,78:172-182.
[10] 黄晓锋,朱凯,曹喜娟.主要合金元素在镁合金中的作用[J].铸造技术,2008(11):1574-1578.
[11] 曹以恒 .铝合金中气孔和夹杂对合金力学性能的影响[D].沈阳:东北大学,2012.
[12] 李谢华 .氢与夹杂对铝合金对铝合金的组织与性能的影响[D].沈阳:东北大学,2013.
[13] QIN Y;PAN Q;HE Y et al.Modeling of flow stress considering dynamic recrystallization for magnesium al-loy ZK60[J].Materials and Manufacturing Processes,2010,25:527-533.
[14] Lin YC;Chen MS;Zhong J .Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J].Computational Materials Science,2008(3):470-477.
[15] SLOFF F A;ZHOU J;DUSZCZYK J;KATGERMAN L .Constitutive analysis of wrought magnesium alloy Mg-4Al-1Zn[J].Scripta Materialia,2007,57(08):759-762.
[16] Yang Z;Guo YC;Li JP;He F;Xia F;Liang MX .Plastic deformation and dynamic recrystallization behaviors of Mg-5Gd-4Y-0.5Zn-0.5Zr alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):487-491.
[17] A. Bussiba;A. Ben Artzy;A. Shtechman;S. Ifergan;M. Kupiec .Grain refinement of AZ31 and ZK60 Mg alloys — towards superplasticity studies[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(1):56-62.
[18] PRORIER J P.Crystal plastic deformation at elevated temperatures[M].Xiao Hui.Dalian:Dalian University of Technology Press,1989:45-76.
[19] H. Takuda;H. Fujimoto;N. Hatta .Modelling on flow stress of MG-Al-Zn alloys at elevated temperatures[J].Journal of Materials Processing Technology,1998(0):513-516.
[20] ZENER C;HOLLOMON J H .Effect of strain rate upon plastic flow of steel[J].Journal of Applied Physics,1944,15:22-32.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%