The relationship between degeneration of the primary M7C3 carbide and precipitation of the secondary M23C6 carbide has been investigated in a cobalt base superalloy after 100 h aging at 850 degrees C. The results indicated that the primary M7C3 carbide could not transform in situ into the secondary M23C6 carbide. The M23C6 formed by a direct reaction between chromium and carbon atoms. The dissolution of M7C3 provided the precipitation of M23C6 with essential carbon, which acted as a carbon reservoir. Near M7C3, the chromium content is a controlling factor of M23C6 precipitation while away from it, the carbon content dominated the reaction. The precipitate free zone around M7C3 is attributed to chromium depletion which is inherited from the as cast condition. MST/4174
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%