欢迎登录材料期刊网

材料期刊网

高级检索

以自由体积理论为基础,利用基于基团贡献法的格子.流体(GCLF)状态方程计算高分子供溶剂扩散的有效自由体积,进而提出改进的高分子-溶剂体系扩散系数模型.模型中与高分子相关的参数均可由基团贡献法确定,可用于预测已知分子结构的高分子中的溶剂扩散系数.计算了8种有机溶剂和6种高分子组成的体系的无限稀释扩散系数和溶剂自扩散系数,与实验值保持良好一致.基于空穴自由体积在高分子总自由体积中所占比例在微观和宏观上应相等的观点,用正电子湮没(PALS)实验结果验证改进方法的合理性.

参考文献

[1] 吕宏凌,王保国,杨基础.溶剂小分子在高分子中的传质研究评述[J].高分子材料科学与工程,2008(03):6-9,14.
[2] Wang BG;Lv HL;Yang JC .Estimation of solvent diffusion coefficient in amorphous polymers using the Sanchez-Lacombe equation-of-state[J].Chemical Engineering Science,2007(26):775-782.
[3] Byung-Chul Lee;Ronald P. Danner .Prediction of Polymer-Solvent Phase Equilibria by a Modified Group-Contribution EOS[J].AIChE Journal,1996(3):837-849.
[4] Dlubek G;Bondarenko V;Al-Qaradawi IY;Kilburn D;Krause-Rehberg R .The structure of the free volume in poly(styrene-co-acrylonitrile) from positron lifetime and pressure volume temperature (PVT) experiments - II. Local free volume from positron annihilation lifetime spectroscopy (PALS)[J].Macromolecular chemistry and physics,2004(4):512-522.
[5] Dlubek G .Fluctuation approach for the estimation of the dynamic heterogeneity in glass-forming liquids from the dispersion in o-Ps lifetimes: Free volume fluctuations in polymers[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2006(26/27):2869-2879.
[6] Seong-Uk Hong .Prediction of Polymer/Solvent Diffusion Behavior Using Free-Volume Theory[J].Industrial & Engineering Chemistry Research,1995(7):2536-2544.
[7] THRAN A.;KROLI G. .Correlation Between Fractional Free Volume and Diffusivity of Gas Molecules in Glassy Polymers[J].Journal of Polymer Science, Part B. Polymer Physics,1999(23):3344-3358.
[8] Yamaguchi T.;Wang BG.;Matsuda E.;Suzuki S.;Nakao SI. .Prediction and estimation of solvent diffusivities in polyacrylate and polymethacrylates[J].Journal of Polymer Science, Part B. Polymer Physics,2003(12):1393-1400.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%