运用盐-金属反应法制备了亚微米TiB2颗粒增强铝基复合材料(TiB2/AC8A).TiB2颗粒通过钛盐和硼盐与铝合金反应原位生成.对复合材料进行了显微组织观察和高温蠕变性能实验.原位TiB2颗粒的尺寸约为0.5 μm,近似呈球形.TiB2/AC8A复合材料具有优异的高温蠕变性能.10 ω/% TiB2原位颗粒(~0.5 μm)增强AC8A复合材料的蠕变抗力比10 φ/% SiCp(1.7 μm)外加颗粒增强Al复合材料至少要高两个数量级.10 ω/% TiB2/AC8A复合材料表现出高的名义应力指数(11.7~12.5)和名义激活能(265 kJ/mol),其稳态蠕变数据能够用应力指数为8的亚结构不变模型和门槛应力来解释.TiB2/AC8A复合材料的蠕变断裂行为符合Monkman-Grant关系式.
Aluminum-based metal matrix composites (MMCs) reinforced with sub-micron TiB2 particulates (TiB2/AC8A) were fabricated by means of the reaction processing method. TiB2 particulates were formed in-situ through the reaction of Ti and B bearing salts and aluminum alloy. Metallography and high-temperature creep tests were used to characterize the microstructure and mechanical properties of these composites. The results show that in-situ TiB2 particulates formed have an average size of 0.5 μm and they exhibit spherical forms. Constant-load creep tests reveal that the TiB2/AC8A composites exhibit excellent mechanical properties. The creep resistance of the 10 wt.% TiB2/AC8A composite (~0.5 μm) is at least two orders of magnitude higher than that of the 10 vol.% SiCp (1.7 μm)/Al composite. Furthermore, the 10 wt.% TiB2/AC8A composite exhibits the apparent stress exponent ranging from 11.7 to 12.5 and the apparent activation energy of 265 kJ/mol. The creep data of the composite was rationalized by using the substructure-invariant model with a stress exponent of 8 and a threshold stress. The creep rupture behavior of the 10 wt.% TiB2/AC8A composite is satisfactorily described by Monkman-Grant relation.
参考文献
[1] | Dragone T L;Nix W D .[J].Acta Metallurgica Et Materialia,1992,40:2781. |
[2] | Pandey A B;Mishra R S;Mahajan Y R .[J].Scripta Metallurgica et Materialia,1990,24:1565. |
[3] | Pandey A B;Mishra R S;Mahajan Y R .[J].Acta Metallurgica Et Materialia,1992,40:2045. |
[4] | 周清;马宗义;赵杰 et al.[J].金属学报,1998,34:107. |
[5] | Mishra R S;Pandey A B .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1990,21:2089. |
[6] | Mohamed F A;Park K T;Lavernia E J .[J].Materials Science and Engineering A,1992,150:21. |
[7] | Gonzalez-Doncel G;Sherby O D .[J].ACTA METALLURGICA ET MATERIALIA,1993,41:2797. |
[8] | Pandey A B;Mishra R S;Mahajan Y R .[J].Materials Science and Engineering A,1994,189:95. |
[9] | Cadek J;Sustek V;Pahutova M .[J].Materials Science and Engineering A,1994,174:141. |
[10] | Cadek J.;Sustek V.;Oikawa H. .THRESHOLD CREEP BEHAVIOUR OF DISCONTINUOUS ALUMINIUM AND ALUMINIUM ALLOY MATRIX COMPOSITES - AN OVERVIEW[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(1/2):9-23. |
[11] | Li Y;Mohamed F A .[J].Acta Materialia,1997,45:4775. |
[12] | Li Y;Langdon T G .[J].Acta Materialia,1997,45:4797. |
[13] | 赵永庆,周廉,Alain Vassel.SiC连续纤维增强钛基复合材料研究[J].稀有金属材料与工程,2003(03):161-163. |
[14] | Davies P;Kellie J L F;Wood J V .[J].Key Engineering Materials,1993,77-78:357. |
[15] | Ma ZY.;Tjong SC. .Creep behavior of in-situ Al2O3 and TiB2 particulates mixture-reinforced aluminum composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):120-128. |
[16] | Sherby O D;Klundt R H;Miller A K .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1977,8:843. |
[17] | Bhanuprasad V V;Staley M A;Ramakrishnan P et al.[J].Key Engineering Materials,1995,104:495. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%