欢迎登录材料期刊网

材料期刊网

高级检索

采用RBF神经网络对204组X70管线钢生产数据进行训练,建立了管线钢成分与力学性能的预测模型,经检验该模型预报精度高,网络预报值与实际值较吻合。利用此模型预报了C、kin、No、Nb、V、Ti等元素含量对管线钢性能的影响规律,并在此基础上确定了X80管线钢的成分范围。对试制生产的X80管线钢进行组织性能检测,结果表明,X80钢的显微组织主要由针状铁素体和粒状贝氏体组成,晶粒细小,力学性能指标达到X80管线钢应用要求。

A radial basis function (RBF) artificial neural network mapping model for composition and mechanical properties of pipeline steels was established based on using nearest neighbor clustering of 204 sets of actual production data. The trained network model exhibits higher accuracy in the prediction, and the prediction values and measured values are coincident very well. Using this model, a test of forecasting on the effects of contents of the alloying elements of C, Mn, Mo, Nb, V, Ti on mechanical properties was conducted, and composition range of X80 pipeline steel was identified. The microstrueture and mechanical properties of X80 pipeline steel were tested. The results show that the mierostructure of X80 pipeline steel is mainly composed of acieular ferrite and granular bainite, and the grain size is fine and the mechanical properties of the X80 pipeline steel fulfill the specifications for engineering application.

参考文献

[1] 郑磊,傅俊岩.高等级管线钢的发展现状[J].钢铁,2006(10):1-10.
[2] 庄传晶,冯耀荣,霍春勇,李鹤林.国内X80级管线钢的发展及今后的研究方向[J].焊管,2005(02):10-14.
[3] Taylor K K;DarseyJ A .Prediction of the electronic properties of polymers using artificial neural networks[J].Polymeric Preprints(American Chemical Society Division of Polymer Chemistry),2000,41(I):331-332.
[4] Cherian R P;Smith L N;Midha P S .A neural network approach for selection of powder metallurgy materials and process parameters[J].Artificial Intelligence in Engineering,2000,SO(14):392-445.
[5] 王航平,王淼,王兰州,李峤.基于RBF神经网络分析的微弱电信号预报[J].浙江大学学报(工学版),2008(12):2127-2132.
[6] 周开利;康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005
[7] 朱明星,张德龙.RBF网络基函数中心选取算法的研究[J].安徽大学学报(自然科学版),2000(01):72-78.
[8] 郝瑞辉,高惠临,丛晖,马薇.合金元素在管线钢中的作用与控制[J].上海金属,2006(01):58-62.
[9] 王立涛,李正邦,张乔英.高钢级管线钢的性能要求与元素控制[J].钢铁研究,2004(04):13-17.
[10] K. Junhua;Z. Lin;G. Bin .Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel[J].Materials & Design,2004(8):723-728.
[11] 范跃华,樊新民,魏伟,单以银,杨柯.高强度管线钢连续冷却转变研究[J].材料热处理学报,2008(03):62-65.
[12] Weihua Sun;Cheng Lu;A. Kiet Tieu;Zhenyi Jiang;Xianghua Liu;Guodong Wang .Influence of Nb, V and Ti on peak strain of deformed austenite in Mo-based micro-alloyed steels[J].Journal of Materials Processing Technology,2002(0):72-76.
[13] 刘健,张开坚,陆建生,左军,杨峰.微合金元素钒在钢板中的强化机理及应用[J].四川冶金,2009(02):15-18.
[14] 丁文华,李淼泉.合金元素和控轧控冷工艺在管线钢研制中的应用[J].材料导报,2007(09):67-70,76.
[15] 廖波,肖福仁.针状铁素体管线钢组织及强韧化机理研究[J].材料热处理学报,2009(02):57-62.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%